BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27153112)

  • 1. Voltage-Dependent Regulation of Complex II Energized Mitochondrial Oxygen Flux.
    Bai F; Fink BD; Yu L; Sivitz WI
    PLoS One; 2016; 11(5):e0154982. PubMed ID: 27153112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxaloacetic acid mediates ADP-dependent inhibition of mitochondrial complex II-driven respiration.
    Fink BD; Bai F; Yu L; Sheldon RD; Sharma A; Taylor EB; Sivitz WI
    J Biol Chem; 2018 Dec; 293(51):19932-19941. PubMed ID: 30385511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired utilization of membrane potential by complex II-energized mitochondria of obese, diabetic mice assessed using ADP recycling methodology.
    Fink BD; Bai F; Yu L; Sivitz WI
    Am J Physiol Regul Integr Comp Physiol; 2016 Oct; 311(4):R756-R763. PubMed ID: 27558314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of complex II-energized respiration in muscle, heart, and brown adipose mitochondria by oxaloacetate and complex I electron flow.
    Fink BD; Yu L; Sivitz WI
    FASEB J; 2019 Nov; 33(11):11696-11705. PubMed ID: 31361970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of ATP production: dependence on calcium concentration and respiratory state.
    Fink BD; Bai F; Yu L; Sivitz WI
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C146-C153. PubMed ID: 28515085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxaloacetate regulates complex II respiration in brown fat: dependence on UCP1 expression.
    Som R; Fink BD; Yu L; Sivitz WI
    Am J Physiol Cell Physiol; 2023 Jun; 324(6):C1236-C1248. PubMed ID: 37125774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane potential-dependent regulation of mitochondrial complex II by oxaloacetate in interscapular brown adipose tissue.
    Fink BD; Rauckhorst AJ; Taylor EB; Yu L; Sivitz WI
    FASEB Bioadv; 2022 Mar; 4(3):197-210. PubMed ID: 35392250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M
    Biochim Biophys Acta; 2008 Oct; 1778(10):1978-2021. PubMed ID: 18510943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling protein-4 (UCP4) increases ATP supply by interacting with mitochondrial Complex II in neuroblastoma cells.
    Ho PW; Ho JW; Tse HM; So DH; Yiu DC; Liu HF; Chan KH; Kung MH; Ramsden DB; Ho SL
    PLoS One; 2012; 7(2):e32810. PubMed ID: 22427795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic clearance of oxaloacetate and mitochondrial complex II respiration: Divergent control in skeletal muscle and brown adipose tissue.
    Yu L; Fink BD; Som R; Rauckhorst AJ; Taylor EB; Sivitz WI
    Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148930. PubMed ID: 36272463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of copper on isolated liver mitochondria: impairment at complexes I, II, and IV leads to increased ROS production.
    Hosseini MJ; Shaki F; Ghazi-Khansari M; Pourahmad J
    Cell Biochem Biophys; 2014 Sep; 70(1):367-81. PubMed ID: 24691927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.
    Bradshaw PC; Pfeiffer DR
    Yeast; 2013 Dec; 30(12):471-83. PubMed ID: 24166770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of permeability transition pore opening on reactive oxygen species production in rat brain mitochondria.
    Akopova OV; Kolchynskayia LY; Nosar' VY; Smyrnov AN; Malisheva MK; Man'kovskaia YN; Sahach VF
    Ukr Biokhim Zh (1999); 2011; 83(6):46-55. PubMed ID: 22364018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tl+ induces the permeability transition pore in Ca2+-loaded rat liver mitochondria energized by glutamate and malate.
    Korotkov SM; Emelyanova LV; Konovalova SA; Brailovskaya IV
    Toxicol In Vitro; 2015 Aug; 29(5):1034-41. PubMed ID: 25910914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese ions enhance mitochondrial H
    Bonke E; Siebels I; Zwicker K; Dröse S
    Free Radic Biol Med; 2016 Oct; 99():43-53. PubMed ID: 27474449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.
    van Beek JH; Tian X; Zuurbier CJ; de Groot B; van Echteld CJ; Eijgelshoven MH; Hak JB
    Mol Cell Biochem; 1998 Jul; 184(1-2):321-44. PubMed ID: 9746328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.
    Amaral AU; Cecatto C; Castilho RF; Wajner M
    J Neurochem; 2016 Apr; 137(1):62-75. PubMed ID: 26800654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Susceptibility of Gracilinanus microtarsus Liver Mitochondria to Ca²⁺-Induced Permeability Transition Is Associated with a More Oxidized State of NAD(P).
    Ronchi JA; Henning B; Ravagnani FG; Figueira TR; Castilho RF; dos Reis SF; Vercesi AE
    Oxid Med Cell Longev; 2015; 2015():940627. PubMed ID: 26583063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.