These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27153295)

  • 1. Quantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI.
    Visser RM; de Haan MI; Beemsterboer T; Haver P; Kindt M; Scholte HS
    Psychophysiology; 2016 Aug; 53(8):1117-27. PubMed ID: 27153295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trial timing and pattern-information analyses of fMRI data.
    Zeithamova D; de Araujo Sanchez MA; Adke A
    Neuroimage; 2017 Jun; 153():221-231. PubMed ID: 28411155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning pain-related fear: neural mechanisms mediating rapid differential conditioning, extinction and reinstatement processes in human visceral pain.
    Gramsch C; Kattoor J; Icenhour A; Forsting M; Schedlowski M; Gizewski ER; Elsenbruch S
    Neurobiol Learn Mem; 2014 Dec; 116():36-45. PubMed ID: 25128878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associative learning increases trial-by-trial similarity of BOLD-MRI patterns.
    Visser RM; Scholte HS; Kindt M
    J Neurosci; 2011 Aug; 31(33):12021-8. PubMed ID: 21849562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural mechanisms of human temporal fear conditioning.
    Harnett NG; Shumen JR; Wagle PA; Wood KH; Wheelock MD; Baños JH; Knight DC
    Neurobiol Learn Mem; 2016 Dec; 136():97-104. PubMed ID: 27693343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrafast Cortical Gain Adaptation in the Human Brain by Trial-To-Trial Changes of Associative Strength in Fear Learning.
    Yuan M; Giménez-Fernández T; Méndez-Bértolo C; Moratti S
    J Neurosci; 2018 Sep; 38(38):8262-8276. PubMed ID: 30104342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal dynamics of brain mechanisms in aversive classical conditioning: high-density event-related potential and brain electrical tomography analyses.
    Pizzagalli DA; Greischar LL; Davidson RJ
    Neuropsychologia; 2003; 41(2):184-94. PubMed ID: 12459216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of pupil dilation during human fear learning.
    Leuchs L; Schneider M; Czisch M; Spoormaker VI
    Neuroimage; 2017 Feb; 147():186-197. PubMed ID: 27915119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representational similarity analysis offers a preview of the noradrenergic modulation of long-term fear memory at the time of encoding.
    Visser RM; Kunze AE; Westhoff B; Scholte HS; Kindt M
    Psychoneuroendocrinology; 2015 May; 55():8-20. PubMed ID: 25705798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient and sustained BOLD signal time courses affect the detection of emotion-related brain activation in fMRI.
    Paret C; Kluetsch R; Ruf M; Demirakca T; Kalisch R; Schmahl C; Ende G
    Neuroimage; 2014 Dec; 103():522-532. PubMed ID: 25204866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate Bayesian decoding of single-trial event-related fMRI responses for memory retrieval of voluntary actions.
    Lee D; Yun S; Jang C; Park HJ
    PLoS One; 2017; 12(8):e0182657. PubMed ID: 28777830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From Pavlov to pain: How predictability affects the anticipation and processing of visceral pain in a fear conditioning paradigm.
    Labrenz F; Icenhour A; Schlamann M; Forsting M; Bingel U; Elsenbruch S
    Neuroimage; 2016 Apr; 130():104-114. PubMed ID: 26854560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representational similarity encoding for fMRI: Pattern-based synthesis to predict brain activity using stimulus-model-similarities.
    Anderson AJ; Zinszer BD; Raizada RDS
    Neuroimage; 2016 Mar; 128():44-53. PubMed ID: 26732404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical conditioning in oddball paradigm: A comparison between aversive and name conditioning.
    Pavlov YG; Kotchoubey B
    Psychophysiology; 2019 Jul; 56(7):e13370. PubMed ID: 30908691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pupil dilation indicates the coding of past prediction errors: Evidence for attentional learning theory.
    Koenig S; Uengoer M; Lachnit H
    Psychophysiology; 2018 Apr; 55(4):. PubMed ID: 29023832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the neural mechanisms of aware and unaware fear memory with FMRI.
    Knight DC; Wood KH
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22006034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel neural responses in amygdala subregions and sensory cortex during implicit fear conditioning.
    Morris JS; Buchel C; Dolan RJ
    Neuroimage; 2001 Jun; 13(6 Pt 1):1044-52. PubMed ID: 11352610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural, electrodermal and behavioral response patterns in contingency aware and unaware subjects during a picture-picture conditioning paradigm.
    Klucken T; Kagerer S; Schweckendiek J; Tabbert K; Vaitl D; Stark R
    Neuroscience; 2009 Jan; 158(2):721-31. PubMed ID: 18976695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tools of the Trade Multivoxel pattern analysis in fMRI: a practical introduction for social and affective neuroscientists.
    Weaverdyck ME; Lieberman MD; Parkinson C
    Soc Cogn Affect Neurosci; 2020 Jun; 15(4):487-509. PubMed ID: 32364607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging learned fear circuitry in awake mice using fMRI.
    Harris AP; Lennen RJ; Marshall I; Jansen MA; Pernet CR; Brydges NM; Duguid IC; Holmes MC
    Eur J Neurosci; 2015 Sep; 42(5):2125-34. PubMed ID: 25943794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.