These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27153295)

  • 41. Study design in fMRI: basic principles.
    Amaro E; Barker GJ
    Brain Cogn; 2006 Apr; 60(3):220-32. PubMed ID: 16427175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Time-dependent changes in learning audiovisual associations: a single-trial fMRI study.
    Gonzalo D; Shallice T; Dolan R
    Neuroimage; 2000 Mar; 11(3):243-55. PubMed ID: 10694466
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Learning arbitrary visuomotor associations: temporal dynamic of brain activity.
    Toni I; Ramnani N; Josephs O; Ashburner J; Passingham RE
    Neuroimage; 2001 Nov; 14(5):1048-57. PubMed ID: 11697936
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.
    Mehta S; Grabowski TJ; Razavi M; Eaton B; Bolinger L
    Neuroimage; 2006 Feb; 29(4):1278-93. PubMed ID: 16412665
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural correlates of sensory preconditioning: a preliminary fMRI investigation.
    Yu T; Lang S; Birbaumer N; Kotchoubey B
    Hum Brain Mapp; 2014 Apr; 35(4):1297-304. PubMed ID: 23450811
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural reactivity tracks fear generalization gradients.
    Greenberg T; Carlson JM; Cha J; Hajcak G; Mujica-Parodi LR
    Biol Psychol; 2013 Jan; 92(1):2-8. PubMed ID: 22200657
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting EEG single trial responses with simultaneous fMRI and relevance vector machine regression.
    De Martino F; de Borst AW; Valente G; Goebel R; Formisano E
    Neuroimage; 2011 May; 56(2):826-36. PubMed ID: 20691274
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
    Faisan S; Thoraval L; Armspach JP; Foucher JR; Metz-Lutz MN; Heitz F
    Acad Radiol; 2005 Jan; 12(1):25-36. PubMed ID: 15691723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous carry-over designs for fMRI.
    Aguirre GK
    Neuroimage; 2007 May; 35(4):1480-94. PubMed ID: 17376705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decoding fMRI activity in the time domain improves classification performance.
    Loula J; Varoquaux G; Thirion B
    Neuroimage; 2018 Oct; 180(Pt A):203-210. PubMed ID: 28801250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing fMRI experimental design for MVPA-based BCI control: Combining the strengths of block and event-related designs.
    Valente G; Kaas AL; Formisano E; Goebel R
    Neuroimage; 2019 Feb; 186():369-381. PubMed ID: 30391345
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dissociable Learning Processes Underlie Human Pain Conditioning.
    Zhang S; Mano H; Ganesh G; Robbins T; Seymour B
    Curr Biol; 2016 Jan; 26(1):52-8. PubMed ID: 26711494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neural Pattern Similarity Unveils the Integration of Social Information and Aversive Learning.
    Undeger I; Visser RM; Olsson A
    Cereb Cortex; 2020 Sep; 30(10):5410-5419. PubMed ID: 32494810
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Onset and offset of aversive events establish distinct memories requiring fear and reward networks.
    Andreatta M; Fendt M; Mühlberger A; Wieser MJ; Imobersteg S; Yarali A; Gerber B; Pauli P
    Learn Mem; 2012 Oct; 19(11):518-26. PubMed ID: 23073641
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Rapid and highly resolving associative affective learning: convergent electro- and magnetoencephalographic evidence from vision and audition.
    Steinberg C; Bröckelmann AK; Rehbein M; Dobel C; Junghöfer M
    Biol Psychol; 2013 Mar; 92(3):526-40. PubMed ID: 23481617
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An fNIRS investigation of associative recognition in the prefrontal cortex with a rapid event-related design.
    Schaeffer JD; Yennu AS; Gandy KC; Tian F; Liu H; Park H
    J Neurosci Methods; 2014 Sep; 235():308-15. PubMed ID: 25063422
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping.
    Atir-Sharon T; Gilboa A; Hazan H; Koilis E; Manevitz LM
    Neural Plast; 2015; 2015():804385. PubMed ID: 26257961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neural representation of stimulus-response associations during task preparation.
    Cookson SL; Hazeltine E; Schumacher EH
    Brain Res; 2016 Oct; 1648(Pt A):496-505. PubMed ID: 27527267
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cortisol enhances neural differentiation during fear acquisition and extinction in contingency aware young women.
    Tabbert K; Merz CJ; Klucken T; Schweckendiek J; Vaitl D; Wolf OT; Stark R
    Neurobiol Learn Mem; 2010 Oct; 94(3):392-401. PubMed ID: 20800102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.