BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 27153341)

  • 21. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis.
    Xu H; Cao B; Li Y; Mao C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1623. PubMed ID: 32147974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advance in phage display technology for bioanalysis.
    Tan Y; Tian T; Liu W; Zhu Z; J Yang C
    Biotechnol J; 2016 Jun; 11(6):732-45. PubMed ID: 27061133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.
    Bignone PA; Krupa RA; West MD; Larocca D
    Methods Mol Biol; 2016; 1357():269-83. PubMed ID: 25410289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early osteogenic differentiation of mouse preosteoblasts induced by collagen-derived DGEA-peptide on nanofibrous phage tissue matrices.
    Yoo SY; Kobayashi M; Lee PP; Lee SW
    Biomacromolecules; 2011 Apr; 12(4):987-96. PubMed ID: 21344869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical Ordered Assembly of Genetically Modifiable Viruses into Nanoridge-in-Microridge Structures.
    Zhou N; Li Y; Loveland CH; Wilson MJ; Cao B; Qiu P; Yang M; Mao C
    Adv Mater; 2019 Dec; 31(52):e1905577. PubMed ID: 31736175
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dental pulp pluripotent-like stem cells (DPPSC), a new stem cell population with chromosomal stability and osteogenic capacity for biomaterials evaluation.
    Núñez-Toldrà R; Martínez-Sarrà E; Gil-Recio C; Carrasco MÁ; Al Madhoun A; Montori S; Atari M
    BMC Cell Biol; 2017 Apr; 18(1):21. PubMed ID: 28427322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced detection of cervical cancer biomarkers using engineered filamentous phage nanofibers.
    Zhou X; Wang Y; Bao M; Chu Y; Liu R; Chen Q; Lin Y
    Appl Microbiol Biotechnol; 2024 Feb; 108(1):221. PubMed ID: 38372795
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polycaprolactone nanofiber scaffold enhances the osteogenic differentiation potency of various human tissue-derived mesenchymal stem cells.
    Xue R; Qian Y; Li L; Yao G; Yang L; Sun Y
    Stem Cell Res Ther; 2017 Jun; 8(1):148. PubMed ID: 28646917
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats.
    Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced in vitro osteogenic differentiation of human fetal MSCs attached to 3D microcarriers versus harvested from 2D monolayers.
    Shekaran A; Sim E; Tan KY; Chan JK; Choolani M; Reuveny S; Oh S
    BMC Biotechnol; 2015 Oct; 15():102. PubMed ID: 26520400
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biomaterials for bone defect repair and bone regeneration].
    Jiang XQ
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2017 Oct; 52(10):600-604. PubMed ID: 29972932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells.
    Ardeshirylajimi A; Dinarvand P; Seyedjafari E; Langroudi L; Adegani FJ; Soleimani M
    Cell Tissue Res; 2013 Dec; 354(3):849-60. PubMed ID: 23955642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel Molecular Design for a Hybrid Phage-DNA Construct Against DKK1.
    Khalili S; Rasaee MJ; Bamdad T; Mard-Soltani M; Asadi Ghalehni M; Jahangiri A; Pouriayevali MH; Aghasadeghi MR; Malaei F
    Mol Biotechnol; 2018 Nov; 60(11):833-842. PubMed ID: 30182325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phage-Enabled Nanomedicine: From Probes to Therapeutics in Precision Medicine.
    Sunderland KS; Yang M; Mao C
    Angew Chem Int Ed Engl; 2017 Feb; 56(8):1964-1992. PubMed ID: 27491926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phage-based vaccines.
    Bao Q; Li X; Han G; Zhu Y; Mao C; Yang M
    Adv Drug Deliv Rev; 2019 May; 145():40-56. PubMed ID: 30594492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of a Landscape Phage Library in a Mouse Xenograft Model of Human Breast Cancer.
    Gillespie JW; Yang L; De Plano LM; Stackhouse MA; Petrenko VA
    Viruses; 2019 Oct; 11(11):. PubMed ID: 31717800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration.
    Lee YH; Wu HC; Yeh CW; Kuan CH; Liao HT; Hsu HC; Tsai JC; Sun JS; Wang TW
    Acta Biomater; 2017 Nov; 63():210-226. PubMed ID: 28899816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.