These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27153571)

  • 1. An algorithm for designing minimal microbial communities with desired metabolic capacities.
    Eng A; Borenstein E
    Bioinformatics; 2016 Jul; 32(13):2008-16. PubMed ID: 27153571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enumerating all possible biosynthetic pathways in metabolic networks.
    Ravikrishnan A; Nasre M; Raman K
    Sci Rep; 2018 Jul; 8(1):9932. PubMed ID: 29967471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Dec; 32(24):3807-3814. PubMed ID: 27559155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.
    Song HS; Goldberg N; Mahajan A; Ramkrishna D
    Bioinformatics; 2017 Aug; 33(15):2345-2353. PubMed ID: 28369193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RevEcoR: an R package for the reverse ecology analysis of microbiomes.
    Cao Y; Wang Y; Zheng X; Li F; Bo X
    BMC Bioinformatics; 2016 Jul; 17(1):294. PubMed ID: 27473172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-based media selection to minimize the cost of metabolic cooperation in microbial ecosystems.
    Zampieri M; Sauer U
    Bioinformatics; 2016 Jun; 32(11):1733-9. PubMed ID: 26833343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CoBAMP: a Python framework for metabolic pathway analysis in constraint-based models.
    Vieira V; Rocha M
    Bioinformatics; 2019 Dec; 35(24):5361-5362. PubMed ID: 31359031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FLYCOP: metabolic modeling-based analysis and engineering microbial communities.
    García-Jiménez B; García JL; Nogales J
    Bioinformatics; 2018 Sep; 34(17):i954-i963. PubMed ID: 30423096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing microbial communities to maximize the thermodynamic driving force for the production of chemicals.
    Bekiaris PS; Klamt S
    PLoS Comput Biol; 2021 Jun; 17(6):e1009093. PubMed ID: 34129600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing function-specific minimal microbiomes from large microbial communities.
    Raghu AK; Palanikumar I; Raman K
    NPJ Syst Biol Appl; 2024 May; 10(1):46. PubMed ID: 38702322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gap-filling algorithm for prediction of metabolic interactions in microbial communities.
    Giannari D; Ho CH; Mahadevan R
    PLoS Comput Biol; 2021 Nov; 17(11):e1009060. PubMed ID: 34723959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. gMCS: fast computation of genetic minimal cut sets in large networks.
    Apaolaza I; Valcarcel LV; Planes FJ
    Bioinformatics; 2019 Feb; 35(3):535-537. PubMed ID: 30052768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CrossPlan: systematic planning of genetic crosses to validate mathematical models.
    Pratapa A; Adames N; Kraikivski P; Franzese N; Tyson JJ; Peccoud J; Murali TM
    Bioinformatics; 2018 Jul; 34(13):2237-2244. PubMed ID: 29432533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable and exhaustive screening of metabolic functions carried out by microbial consortia.
    Frioux C; Fremy E; Trottier C; Siegel A
    Bioinformatics; 2018 Sep; 34(17):i934-i943. PubMed ID: 30423063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary algorithm for designing microbial communities via environmental modification.
    Pacheco AR; Segrè D
    J R Soc Interface; 2021 Jun; 18(179):20210348. PubMed ID: 34157894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MinReact: a systematic approach for identifying minimal metabolic networks.
    Sambamoorthy G; Raman K
    Bioinformatics; 2020 Aug; 36(15):4309-4315. PubMed ID: 32407533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale fluxes predicted under the guidance of enzyme abundance using a novel hyper-cube shrink algorithm.
    Xie Z; Zhang T; Ouyang Q
    Bioinformatics; 2018 Feb; 34(3):502-510. PubMed ID: 28968667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach.
    Guil F; Hidalgo JF; García JM
    Bioinformatics; 2020 Aug; 36(14):4163-4170. PubMed ID: 32348455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIMOSA2: a metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data.
    Noecker C; Eng A; Muller E; Borenstein E
    Bioinformatics; 2022 Mar; 38(6):1615-1623. PubMed ID: 34999748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.