These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27153571)

  • 21. MetaFast: fast reference-free graph-based comparison of shotgun metagenomic data.
    Ulyantsev VI; Kazakov SV; Dubinkina VB; Tyakht AV; Alexeev DG
    Bioinformatics; 2016 Sep; 32(18):2760-7. PubMed ID: 27259541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A unified ILP framework for core ancestral genome reconstruction problems.
    Avdeyev P; Alexeev N; Rong Y; Alekseyev MA
    Bioinformatics; 2020 May; 36(10):2993-3003. PubMed ID: 32058559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Algorithms and complexity of enumerating minimal precursor sets in genome-wide metabolic networks.
    Acuña V; Milreu PV; Cottret L; Marchetti-Spaccamela A; Stougie L; Sagot MF
    Bioinformatics; 2012 Oct; 28(19):2474-83. PubMed ID: 22782547
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ErrorTracer: an algorithm for identifying the origins of inconsistencies in genome-scale metabolic models.
    Martyushenko N; Almaas E
    Bioinformatics; 2020 Mar; 36(5):1644-1646. PubMed ID: 31598631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MCS2: minimal coordinated supports for fast enumeration of minimal cut sets in metabolic networks.
    Miraskarshahi R; Zabeti H; Stephen T; Chindelevitch L
    Bioinformatics; 2019 Jul; 35(14):i615-i623. PubMed ID: 31510702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. BeReTa: a systematic method for identifying target transcriptional regulators to enhance microbial production of chemicals.
    Kim M; Sun G; Lee DY; Kim BG
    Bioinformatics; 2017 Jan; 33(1):87-94. PubMed ID: 27605107
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An integrated network visualization framework towards metabolic engineering applications.
    Noronha A; Vilaça P; Rocha M
    BMC Bioinformatics; 2014 Dec; 15(1):420. PubMed ID: 25547011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying Keystone Species in the Microbial Community Based on Cross- Sectional Data.
    Li M; Zhang J; Wu B; Zhou Z; Xu Y
    Curr Gene Ther; 2018; 18(5):296-306. PubMed ID: 30306866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BoostGAPFILL: improving the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.
    Oyetunde T; Zhang M; Chen Y; Tang Y; Lo C
    Bioinformatics; 2017 Feb; 33(4):608-611. PubMed ID: 27797784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exact quantification of cellular robustness in genome-scale metabolic networks.
    Gerstl MP; Klamt S; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2016 Mar; 32(5):730-7. PubMed ID: 26543173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of Boolean metabolic networks: integer linear programming based approach.
    Qiu Y; Jiang H; Ching WK; Cheng X
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):7. PubMed ID: 29671395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CAMPways: constrained alignment framework for the comparative analysis of a pair of metabolic pathways.
    Abaka G; Bıyıkoğlu T; Erten C
    Bioinformatics; 2013 Jul; 29(13):i145-53. PubMed ID: 23812978
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding metabolic pathways using atom tracking.
    Heath AP; Bennett GN; Kavraki LE
    Bioinformatics; 2010 Jun; 26(12):1548-55. PubMed ID: 20421197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CCLasso: correlation inference for compositional data through Lasso.
    Fang H; Huang C; Zhao H; Deng M
    Bioinformatics; 2015 Oct; 31(19):3172-80. PubMed ID: 26048598
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NIHBA: a network interdiction approach for metabolic engineering design.
    Jiang S; Wang Y; Kaiser M; Krasnogor N
    Bioinformatics; 2020 Jun; 36(11):3482-3492. PubMed ID: 32167529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maximum likelihood reconstruction of ancestral networks by integer linear programming.
    Rajan V; Zhang Z; Kingsford C; Zhang X
    Bioinformatics; 2021 May; 37(8):1083-1092. PubMed ID: 33135733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NICEpath: Finding metabolic pathways in large networks through atom-conserving substrate-product pairs.
    Hafner J; Hatzimanikatis V
    Bioinformatics; 2021 Oct; 37(20):3560-3568. PubMed ID: 34003971
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A safety framework for flow decomposition problems via integer linear programming.
    Dias FHC; Cáceres M; Williams L; Mumey B; Tomescu AI
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37862229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-scale strain designs based on regulatory minimal cut sets.
    Mahadevan R; von Kamp A; Klamt S
    Bioinformatics; 2015 Sep; 31(17):2844-51. PubMed ID: 25913205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.