These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27153592)

  • 21. IndeCut evaluates performance of network motif discovery algorithms.
    Ansariola M; Megraw M; Koslicki D
    Bioinformatics; 2018 May; 34(9):1514-1521. PubMed ID: 29236975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Centrality-based pathway enrichment: a systematic approach for finding significant pathways dominated by key genes.
    Gu Z; Liu J; Cao K; Zhang J; Wang J
    BMC Syst Biol; 2012 Jun; 6():56. PubMed ID: 22672776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
    Liang C; Li Y; Luo J; Zhang Z
    Bioinformatics; 2015 Jul; 31(14):2348-55. PubMed ID: 25788622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Discriminating response groups in metabolic and regulatory pathway networks.
    Van Hemert JL; Dickerson JA
    Bioinformatics; 2012 Apr; 28(7):947-54. PubMed ID: 22308149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene prioritization based on random walks with restarts and absorbing states, to define gene sets regulating drug pharmacodynamics from single-cell analyses.
    Sales de Queiroz A; Sales Santa Cruz G; Jean-Marie A; Mazauric D; Roux J; Cazals F
    PLoS One; 2022; 17(11):e0268956. PubMed ID: 36342924
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel target convergence set based random walk with restart for prediction of potential LncRNA-disease associations.
    Li J; Li X; Feng X; Wang B; Zhao B; Wang L
    BMC Bioinformatics; 2019 Dec; 20(1):626. PubMed ID: 31795943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.
    Zhao ZQ; Han GS; Yu ZG; Li J
    Comput Biol Chem; 2015 Aug; 57():21-8. PubMed ID: 25736609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network.
    Li Y; Patra JC
    Bioinformatics; 2010 May; 26(9):1219-24. PubMed ID: 20215462
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of functional CNV region networks using a CNV-gene mapping algorithm in a genome-wide scale.
    Park C; Ahn J; Yoon Y; Park S
    Bioinformatics; 2012 Aug; 28(15):2045-51. PubMed ID: 22652832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting genetic interactions with random walks on biological networks.
    Chipman KC; Singh AK
    BMC Bioinformatics; 2009 Jan; 10():17. PubMed ID: 19138426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linearity of network proximity measures: implications for set-based queries and significance testing.
    Maxwell S; Chance MR; Koyutürk M
    Bioinformatics; 2017 May; 33(9):1354-1361. PubMed ID: 28453667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detecting subnetwork-level dynamic correlations.
    Yan Y; Qiu S; Jin Z; Gong S; Bai Y; Lu J; Yu T
    Bioinformatics; 2017 Jan; 33(2):256-265. PubMed ID: 27667792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate multiple network alignment through context-sensitive random walk.
    Jeong H; Yoon BJ
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S7. PubMed ID: 25707987
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the measurement of semantic similarity by combining gene ontology and co-functional network: a random walk based approach.
    Peng J; Zhang X; Hui W; Lu J; Li Q; Liu S; Shang X
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):18. PubMed ID: 29560823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.