BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27153602)

  • 1. Quantitative phosphoproteomics-based molecular network description for high-resolution kinase-substrate interactome analysis.
    Narushima Y; Kozuka-Hata H; Tsumoto K; Inoue J; Oyama M
    Bioinformatics; 2016 Jul; 32(14):2083-8. PubMed ID: 27153602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data.
    Yang P; Humphrey SJ; James DE; Yang YH; Jothi R
    Bioinformatics; 2016 Jan; 32(2):252-9. PubMed ID: 26395771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoproteomics reveals network rewiring to a pro-adhesion state in annexin-1-deficient mammary epithelial cells.
    Alli-Shaik A; Wee S; Lim LHK; Gunaratne J
    Breast Cancer Res; 2017 Dec; 19(1):132. PubMed ID: 29233185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database.
    Yang CY; Chang CH; Yu YL; Lin TC; Lee SA; Yen CC; Yang JM; Lai JM; Hong YR; Tseng TL; Chao KM; Huang CY
    Bioinformatics; 2008 Aug; 24(16):i14-20. PubMed ID: 18689816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinformatics Analysis of Protein Phosphorylation in Plant Systems Biology Using P3DB.
    Yao Q; Xu D
    Methods Mol Biol; 2017; 1558():127-138. PubMed ID: 28150236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative phosphoproteomics to characterize signaling networks.
    Rigbolt KT; Blagoev B
    Semin Cell Dev Biol; 2012 Oct; 23(8):863-71. PubMed ID: 22677334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating Phosphoproteomics and Bioinformatics to Study Brassinosteroid-Regulated Phosphorylation Dynamics in Arabidopsis.
    Lin LL; Hsu CL; Hu CW; Ko SY; Hsieh HL; Huang HC; Juan HF
    BMC Genomics; 2015 Jul; 16(1):533. PubMed ID: 26187819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of co-phosphorylation networks.
    Ayati M; Yılmaz S; Chance MR; Koyuturk M
    Bioinformatics; 2022 Aug; 38(15):3785-3793. PubMed ID: 35731218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphoproteomics-based network medicine.
    Liu Z; Wang Y; Xue Y
    FEBS J; 2013 Nov; 280(22):5696-704. PubMed ID: 23751130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative Network Analysis Combined with Quantitative Phosphoproteomics Reveals Transforming Growth Factor-beta Receptor type-2 (TGFBR2) as a Novel Regulator of Glioblastoma Stem Cell Properties.
    Narushima Y; Kozuka-Hata H; Koyama-Nasu R; Tsumoto K; Inoue J; Akiyama T; Oyama M
    Mol Cell Proteomics; 2016 Mar; 15(3):1017-31. PubMed ID: 26670566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.
    Olsen JV; Vermeulen M; Santamaria A; Kumar C; Miller ML; Jensen LJ; Gnad F; Cox J; Jensen TS; Nigg EA; Brunak S; Mann M
    Sci Signal; 2010 Jan; 3(104):ra3. PubMed ID: 20068231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics-based systems analysis of signal transduction networks.
    Kozuka-Hata H; Tasaki S; Oyama M
    Front Physiol; 2011; 2():113. PubMed ID: 22291655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProteoConnections: a bioinformatics platform to facilitate proteome and phosphoproteome analyses.
    Courcelles M; Lemieux S; Voisin L; Meloche S; Thibault P
    Proteomics; 2011 Jul; 11(13):2654-71. PubMed ID: 21630457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resources for Assignment of Phosphorylation Sites on Peptides and Proteins.
    Ravikumar V; Macek B; Mijakovic I
    Methods Mol Biol; 2016; 1355():293-306. PubMed ID: 26584934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative phosphoproteomics--an emerging key technology in signal-transduction research.
    Schreiber TB; Mäusbacher N; Breitkopf SB; Grundner-Culemann K; Daub H
    Proteomics; 2008 Nov; 8(21):4416-32. PubMed ID: 18837465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative phosphoproteomics reveals molecular pathway network alterations in human early-stage primary hepatic carcinomas: potential for 3P medical approach.
    Zhang Y; Li N; Yang L; Jia W; Li Z; Shao Q; Zhan X
    EPMA J; 2023 Sep; 14(3):477-502. PubMed ID: 37605650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphomatics: interactive interrogation of substrate-kinase networks in global phosphoproteomics datasets.
    Leeming MG; O'Callaghan S; Licata L; Iannuccelli M; Lo Surdo P; Micarelli E; Ang CS; Nie S; Varshney S; Ameen S; Cheng HC; Williamson NA
    Bioinformatics; 2021 Jul; 37(11):1635-1636. PubMed ID: 33119075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide analysis of temporal phosphorylation dynamics in lysophosphatidic acid-induced signaling.
    Mäusbacher N; Schreiber TB; Machatti M; Schaab C; Daub H
    Proteomics; 2012 Dec; 12(23-24):3485-98. PubMed ID: 23090842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle.
    Daub H; Olsen JV; Bairlein M; Gnad F; Oppermann FS; Körner R; Greff Z; Kéri G; Stemmann O; Mann M
    Mol Cell; 2008 Aug; 31(3):438-48. PubMed ID: 18691976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.