BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27153612)

  • 1. ProbFold: a probabilistic method for integration of probing data in RNA secondary structure prediction.
    Sahoo S; Świtnicki MP; Pedersen JS
    Bioinformatics; 2016 Sep; 32(17):2626-35. PubMed ID: 27153612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data.
    Wu Y; Shi B; Ding X; Liu T; Hu X; Yip KY; Yang ZR; Mathews DH; Lu ZJ
    Nucleic Acids Res; 2015 Sep; 43(15):7247-59. PubMed ID: 26170232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PINCAGE: probabilistic integration of cancer genomics data for perturbed gene identification and sample classification.
    Świtnicki MP; Juul M; Madsen T; Sørensen KD; Pedersen JS
    Bioinformatics; 2016 May; 32(9):1353-65. PubMed ID: 26740525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CONTRAfold: RNA secondary structure prediction without physics-based models.
    Do CB; Woods DA; Batzoglou S
    Bioinformatics; 2006 Jul; 22(14):e90-8. PubMed ID: 16873527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of several lightweight stochastic context-free grammars for RNA secondary structure prediction.
    Dowell RD; Eddy SR
    BMC Bioinformatics; 2004 Jun; 5():71. PubMed ID: 15180907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-directed RNA secondary structure prediction using probabilistic modeling.
    Deng F; Ledda M; Vaziri S; Aviran S
    RNA; 2016 Aug; 22(8):1109-19. PubMed ID: 27251549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data.
    Sükösd Z; Knudsen B; Kjems J; Pedersen CN
    Bioinformatics; 2012 Oct; 28(20):2691-2. PubMed ID: 22877864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational identification of protein binding sites on RNAs using high-throughput RNA structure-probing data.
    Hu X; Wong TK; Lu ZJ; Chan TF; Lau TC; Yiu SM; Yip KY
    Bioinformatics; 2014 Apr; 30(8):1049-1055. PubMed ID: 24376038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metrics for rapid quality control in RNA structure probing experiments.
    Choudhary K; Shih NP; Deng F; Ledda M; Li B; Aviran S
    Bioinformatics; 2016 Dec; 32(23):3575-3583. PubMed ID: 27497441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments.
    Selega A; Sirocchi C; Iosub I; Granneman S; Sanguinetti G
    Nat Methods; 2017 Jan; 14(1):83-89. PubMed ID: 27819660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterising RNA secondary structure space using information entropy.
    Sükösd Z; Knudsen B; Anderson JW; Novák A; Kjems J; Pedersen CN
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S22. PubMed ID: 23368905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving RNA secondary structure prediction with structure mapping data.
    Sloma MF; Mathews DH
    Methods Enzymol; 2015; 553():91-114. PubMed ID: 25726462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SHAPE directed RNA folding.
    Lorenz R; Luntzer D; Hofacker IL; Stadler PF; Wolfinger MT
    Bioinformatics; 2016 Jan; 32(1):145-7. PubMed ID: 26353838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCFGs in RNA secondary structure prediction RNA secondary structure prediction: a hands-on approach.
    Sükösd Z; Andersen ES; Lyngsø R
    Methods Mol Biol; 2014; 1097():143-62. PubMed ID: 24639159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of accessibility data from structure probing into RNA-RNA interaction prediction.
    Miladi M; Montaseri S; Backofen R; Raden M
    Bioinformatics; 2019 Aug; 35(16):2862-2864. PubMed ID: 30590479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA structure framework: automated transcriptome-wide reconstruction of RNA secondary structures from high-throughput structure probing data.
    Incarnato D; Neri F; Anselmi F; Oliviero S
    Bioinformatics; 2016 Feb; 32(3):459-61. PubMed ID: 26487736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RASP: an atlas of transcriptome-wide RNA secondary structure probing data.
    Li P; Zhou X; Xu K; Zhang QC
    Nucleic Acids Res; 2021 Jan; 49(D1):D183-D191. PubMed ID: 33068412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate prediction of RNA nucleotide interactions with backbone k-tree model.
    Ding L; Xue X; LaMarca S; Mohebbi M; Samad A; Malmberg RL; Cai L
    Bioinformatics; 2015 Aug; 31(16):2660-7. PubMed ID: 25886978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer).
    Berkowitz ND; Silverman IM; Childress DM; Kazan H; Wang LS; Gregory BD
    BMC Bioinformatics; 2016 May; 17(1):215. PubMed ID: 27188311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-supervised learning approach for RNA secondary structure prediction.
    Yonemoto H; Asai K; Hamada M
    Comput Biol Chem; 2015 Aug; 57():72-9. PubMed ID: 25748534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.