BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 27153661)

  • 1. densityCut: an efficient and versatile topological approach for automatic clustering of biological data.
    Ding J; Shah S; Condon A
    Bioinformatics; 2016 Sep; 32(17):2567-76. PubMed ID: 27153661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HGC: fast hierarchical clustering for large-scale single-cell data.
    Zou Z; Hua K; Zhang X
    Bioinformatics; 2021 Nov; 37(21):3964-3965. PubMed ID: 34096998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LCE: a link-based cluster ensemble method for improved gene expression data analysis.
    Iam-on N; Boongoen T; Garrett S
    Bioinformatics; 2010 Jun; 26(12):1513-9. PubMed ID: 20444838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Knowledge-assisted recognition of cluster boundaries in gene expression data.
    Okada Y; Sahara T; Mitsubayashi H; Ohgiya S; Nagashima T
    Artif Intell Med; 2005; 35(1-2):171-83. PubMed ID: 16054350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional grouping of similar genes using eigenanalysis on minimum spanning tree based neighborhood graph.
    Jothi R; Mohanty SK; Ojha A
    Comput Biol Med; 2016 Apr; 71():135-48. PubMed ID: 26945461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a Gibbs sampler method for model-based clustering of gene expression data.
    Joshi A; Van de Peer Y; Michoel T
    Bioinformatics; 2008 Jan; 24(2):176-83. PubMed ID: 18033794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamically growing self-organizing tree (DGSOT) for hierarchical clustering gene expression profiles.
    Luo F; Khan L; Bastani F; Yen IL; Zhou J
    Bioinformatics; 2004 Nov; 20(16):2605-17. PubMed ID: 15130935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting clusters of different geometrical shapes in microarray gene expression data.
    Kim DW; Lee KH; Lee D
    Bioinformatics; 2005 May; 21(9):1927-34. PubMed ID: 15647300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modified hyperplane clustering algorithm allows for efficient and accurate clustering of extremely large datasets.
    Sharma A; Podolsky R; Zhao J; McIndoe RA
    Bioinformatics; 2009 May; 25(9):1152-7. PubMed ID: 19261720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray data clustering based on temporal variation: FCV with TSD preclustering.
    Möller-Levet CS; Cho KH; Wolkenhauer O
    Appl Bioinformatics; 2003; 2(1):35-45. PubMed ID: 15130832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cross-species bi-clustering approach to identifying conserved co-regulated genes.
    Sun J; Jiang Z; Tian X; Bi J
    Bioinformatics; 2016 Jun; 32(12):i137-i146. PubMed ID: 27307610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering short time series gene expression data.
    Ernst J; Nau GJ; Bar-Joseph Z
    Bioinformatics; 2005 Jun; 21 Suppl 1():i159-68. PubMed ID: 15961453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach.
    Pihur V; Datta S; Datta S
    Bioinformatics; 2007 Jul; 23(13):1607-15. PubMed ID: 17483500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering of gene expression data: performance and similarity analysis.
    Yin L; Huang CH; Ni J
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S19. PubMed ID: 17217511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new algorithm for comparing and visualizing relationships between hierarchical and flat gene expression data clusterings.
    Torrente A; Kapushesky M; Brazma A
    Bioinformatics; 2005 Nov; 21(21):3993-9. PubMed ID: 16141251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph-based consensus clustering for class discovery from gene expression data.
    Yu Z; Wong HS; Wang H
    Bioinformatics; 2007 Nov; 23(21):2888-96. PubMed ID: 17872912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clusterdv: a simple density-based clustering method that is robust, general and automatic.
    Marques JC; Orger MB
    Bioinformatics; 2019 Jun; 35(12):2125-2132. PubMed ID: 30407500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering threshold gradient descent regularization: with applications to microarray studies.
    Ma S; Huang J
    Bioinformatics; 2007 Feb; 23(4):466-72. PubMed ID: 17182700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the Clustering Algorithm for Analyzing Gene Expression Data with a Bidirectional Penalty.
    Yang H; Liu X
    J Comput Biol; 2017 Jul; 24(7):689-698. PubMed ID: 28489418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SCHNEL: scalable clustering of high dimensional single-cell data.
    Abdelaal T; de Raadt P; Lelieveldt BPF; Reinders MJT; Mahfouz A
    Bioinformatics; 2020 Dec; 36(Suppl_2):i849-i856. PubMed ID: 33381821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.