These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 27153662)

  • 1. Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm.
    Luo H; Wang J; Li M; Luo J; Peng X; Wu FX; Pan Y
    Bioinformatics; 2016 Sep; 32(17):2664-71. PubMed ID: 27153662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational drug repositioning using low-rank matrix approximation and randomized algorithms.
    Luo H; Li M; Wang S; Liu Q; Li Y; Wang J
    Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion.
    Yan CK; Wang WX; Zhang G; Wang JL; Patel A
    J Comput Biol; 2019 Nov; 26(11):1230-1242. PubMed ID: 31140857
    [No Abstract]   [Full Text] [Related]  

  • 4. Computational drug repositioning based on multi-similarities bilinear matrix factorization.
    Yang M; Wu G; Zhao Q; Li Y; Wang J
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33147616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug Repositioning by Integrating Known Disease-Gene and Drug-Target Associations in a Semi-supervised Learning Model.
    Le DH; Nguyen-Ngoc D
    Acta Biotheor; 2018 Dec; 66(4):315-331. PubMed ID: 29700660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Drug Repositioning Approach Based on Integrative Multiple Similarity Measures.
    Yan C; Feng L; Wang W; Wang J; Zhang G; Luo J
    Curr Mol Med; 2020; 20(6):442-451. PubMed ID: 31729291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
    Jarada TN; Rokne JG; Alhajj R
    BMC Bioinformatics; 2021 Jan; 22(1):28. PubMed ID: 33482713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug repositioning by integrating target information through a heterogeneous network model.
    Wang W; Yang S; Zhang X; Li J
    Bioinformatics; 2014 Oct; 30(20):2923-30. PubMed ID: 24974205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drug repositioning through integration of prior knowledge and projections of drugs and diseases.
    Xuan P; Cao Y; Zhang T; Wang X; Pan S; Shen T
    Bioinformatics; 2019 Oct; 35(20):4108-4119. PubMed ID: 30865257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on multi-view learning with matrix completion.
    Yan Y; Yang M; Zhao H; Duan G; Peng X; Wang J
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35289352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational drug repositioning using meta-path-based semantic network analysis.
    Tian Z; Teng Z; Cheng S; Guo M
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):134. PubMed ID: 30598084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug repositioning based on bounded nuclear norm regularization.
    Yang M; Luo H; Li Y; Wang J
    Bioinformatics; 2019 Jul; 35(14):i455-i463. PubMed ID: 31510658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods.
    Yan XY; Zhang SW; He CR
    Comput Biol Chem; 2019 Feb; 78():460-467. PubMed ID: 30528728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous graph inference with matrix completion for computational drug repositioning.
    Yang M; Huang L; Xu Y; Lu C; Wang J
    Bioinformatics; 2021 Apr; 36(22-23):5456-5464. PubMed ID: 33331887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Drug Repositioning with Random Walk on a Heterogeneous Network.
    Luo H; Wang J; Li M; Luo J; Ni P; Zhao K; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(6):1890-1900. PubMed ID: 29994051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting drug-disease interactions by semi-supervised graph cut algorithm and three-layer data integration.
    Wu G; Liu J; Wang C
    BMC Med Genomics; 2017 Dec; 10(Suppl 5):79. PubMed ID: 29297383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug repositioning of herbal compounds via a machine-learning approach.
    Kim E; Choi AS; Nam H
    BMC Bioinformatics; 2019 May; 20(Suppl 10):247. PubMed ID: 31138103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LRSSL: predict and interpret drug-disease associations based on data integration using sparse subspace learning.
    Liang X; Zhang P; Yan L; Fu Y; Peng F; Qu L; Shao M; Chen Y; Chen Z
    Bioinformatics; 2017 Apr; 33(8):1187-1196. PubMed ID: 28096083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep mining heterogeneous networks of biomedical linked data to predict novel drug-target associations.
    Zong N; Kim H; Ngo V; Harismendy O
    Bioinformatics; 2017 Aug; 33(15):2337-2344. PubMed ID: 28430977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.