These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27153687)

  • 1. EPS: an empirical Bayes approach to integrating pleiotropy and tissue-specific information for prioritizing risk genes.
    Liu J; Wan X; Ma S; Yang C
    Bioinformatics; 2016 Jun; 32(12):1856-64. PubMed ID: 27153687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LLR: a latent low-rank approach to colocalizing genetic risk variants in multiple GWAS.
    Liu J; Wan X; Wang C; Yang C; Zhou X; Yang C
    Bioinformatics; 2017 Dec; 33(24):3878-3886. PubMed ID: 28961754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IGESS: a statistical approach to integrating individual-level genotype data and summary statistics in genome-wide association studies.
    Dai M; Ming J; Cai M; Liu J; Yang C; Wan X; Xu Z
    Bioinformatics; 2017 Sep; 33(18):2882-2889. PubMed ID: 28498950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LPG: A four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies.
    Yang Y; Dai M; Huang J; Lin X; Yang C; Chen M; Liu J
    BMC Genomics; 2018 Jun; 19(1):503. PubMed ID: 29954342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JEPEG: a summary statistics based tool for gene-level joint testing of functional variants.
    Lee D; Williamson VS; Bigdeli TB; Riley BP; Fanous AH; Vladimirov VI; Bacanu SA
    Bioinformatics; 2015 Apr; 31(8):1176-82. PubMed ID: 25505091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LSMM: a statistical approach to integrating functional annotations with genome-wide association studies.
    Ming J; Dai M; Cai M; Wan X; Liu J; Yang C
    Bioinformatics; 2018 Aug; 34(16):2788-2796. PubMed ID: 29608640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation.
    Chung D; Yang C; Li C; Gelernter J; Zhao H
    PLoS Genet; 2014 Nov; 10(11):e1004787. PubMed ID: 25393678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian weighted Mendelian randomization for causal inference based on summary statistics.
    Zhao J; Ming J; Hu X; Chen G; Liu J; Yang C
    Bioinformatics; 2020 Mar; 36(5):1501-1508. PubMed ID: 31593215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint analysis of individual-level and summary-level GWAS data by leveraging pleiotropy.
    Dai M; Wan X; Peng H; Wang Y; Liu Y; Liu J; Xu Z; Yang C
    Bioinformatics; 2019 May; 35(10):1729-1736. PubMed ID: 30307540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unifying framework for joint trait analysis under a non-infinitesimal model.
    Johnson R; Shi H; Pasaniuc B; Sankararaman S
    Bioinformatics; 2018 Jul; 34(13):i195-i201. PubMed ID: 29949958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Openness weighted association studies: leveraging personal genome information to prioritize non-coding variants.
    Song S; Shan N; Wang G; Yan X; Liu JS; Hou L
    Bioinformatics; 2021 Dec; 37(24):4737-4743. PubMed ID: 34260700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving SNP prioritization and pleiotropic architecture estimation by incorporating prior knowledge using graph-GPA.
    Kim HJ; Yu Z; Lawson A; Zhao H; Chung D
    Bioinformatics; 2018 Jun; 34(12):2139-2141. PubMed ID: 29432514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian joint analysis of heterogeneous genomics data.
    Ray P; Zheng L; Lucas J; Carin L
    Bioinformatics; 2014 May; 30(10):1370-6. PubMed ID: 24489367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PheGWAS: a new dimension to visualize GWAS across multiple phenotypes.
    George G; Gan S; Huang Y; Appleby P; Nar AS; Venkatesan R; Mohan V; Palmer CNA; Doney ASF
    Bioinformatics; 2020 Apr; 36(8):2500-2505. PubMed ID: 31860083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NAM: association studies in multiple populations.
    Xavier A; Xu S; Muir WM; Rainey KM
    Bioinformatics; 2015 Dec; 31(23):3862-4. PubMed ID: 26243017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. repfdr: a tool for replicability analysis for genome-wide association studies.
    Heller R; Yaacoby S; Yekutieli D
    Bioinformatics; 2014 Oct; 30(20):2971-2. PubMed ID: 25012182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CoMM: a collaborative mixed model to dissecting genetic contributions to complex traits by leveraging regulatory information.
    Yang C; Wan X; Lin X; Chen M; Zhou X; Liu J
    Bioinformatics; 2019 May; 35(10):1644-1652. PubMed ID: 30295737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the predictive power of polygenic scores derived from genome-wide association studies: a study of 10 complex traits.
    So HC; Sham PC
    Bioinformatics; 2017 Mar; 33(6):886-892. PubMed ID: 28065900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using multiple measurements of tissue to estimate subject- and cell-type-specific gene expression.
    Wang J; Devlin B; Roeder K
    Bioinformatics; 2020 Feb; 36(3):782-788. PubMed ID: 31400192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cgmisc: enhanced genome-wide association analyses and visualization.
    Kierczak M; Jabłońska J; Forsberg SK; Bianchi M; Tengvall K; Pettersson M; Scholz V; Meadows JR; Jern P; Carlborg Ö; Lindblad-Toh K
    Bioinformatics; 2015 Dec; 31(23):3830-1. PubMed ID: 26249815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.