These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27153696)

  • 1. ll-ACHRB: a scalable algorithm for sampling the feasible solution space of metabolic networks.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Aug; 32(15):2330-7. PubMed ID: 27153696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast-SNP: a fast matrix pre-processing algorithm for efficient loopless flux optimization of metabolic models.
    Saa PA; Nielsen LK
    Bioinformatics; 2016 Dec; 32(24):3807-3814. PubMed ID: 27559155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LooplessFluxSampler: an efficient toolbox for sampling the loopless flux solution space of metabolic models.
    Saa PA; Zapararte S; Drovandi CC; Nielsen LK
    BMC Bioinformatics; 2024 Jan; 25(1):3. PubMed ID: 38166586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models.
    Haraldsdóttir HS; Cousins B; Thiele I; Fleming RMT; Vempala S
    Bioinformatics; 2017 Jun; 33(11):1741-1743. PubMed ID: 28158334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obstructions to Sampling Qualitative Properties.
    Reimers AC
    PLoS One; 2015; 10(8):e0135636. PubMed ID: 26287384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast thermodynamically constrained flux variability analysis.
    Müller AC; Bockmayr A
    Bioinformatics; 2013 Apr; 29(7):903-9. PubMed ID: 23390138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FluxModeCalculator: an efficient tool for large-scale flux mode computation.
    van Klinken JB; Willems van Dijk K
    Bioinformatics; 2016 Apr; 32(8):1265-6. PubMed ID: 26685305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gapsplit: efficient random sampling for non-convex constraint-based models.
    Keaty TC; Jensen PA
    Bioinformatics; 2020 Apr; 36(8):2623-2625. PubMed ID: 31913465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. optGpSampler: an improved tool for uniformly sampling the solution-space of genome-scale metabolic networks.
    Megchelenbrink W; Huynen M; Marchiori E
    PLoS One; 2014; 9(2):e86587. PubMed ID: 24551039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerating flux balance calculations in genome-scale metabolic models by localizing the application of loopless constraints.
    Chan SHJ; Wang L; Dash S; Maranas CD
    Bioinformatics; 2018 Dec; 34(24):4248-4255. PubMed ID: 29868725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian parameter estimation for biochemical reaction networks using region-based adaptive parallel tempering.
    Ballnus B; Schaper S; Theis FJ; Hasenauer J
    Bioinformatics; 2018 Jul; 34(13):i494-i501. PubMed ID: 29949983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random sampling of elementary flux modes in large-scale metabolic networks.
    Machado D; Soons Z; Patil KR; Ferreira EC; Rocha I
    Bioinformatics; 2012 Sep; 28(18):i515-i521. PubMed ID: 22962475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-scale fluxes predicted under the guidance of enzyme abundance using a novel hyper-cube shrink algorithm.
    Xie Z; Zhang T; Ouyang Q
    Bioinformatics; 2018 Feb; 34(3):502-510. PubMed ID: 28968667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. smallWig: parallel compression of RNA-seq WIG files.
    Wang Z; Weissman T; Milenkovic O
    Bioinformatics; 2016 Jan; 32(2):173-80. PubMed ID: 26424856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient searching and annotation of metabolic networks using chemical similarity.
    Pertusi DA; Stine AE; Broadbelt LJ; Tyo KE
    Bioinformatics; 2015 Apr; 31(7):1016-24. PubMed ID: 25417203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TRFBA: an algorithm to integrate genome-scale metabolic and transcriptional regulatory networks with incorporation of expression data.
    Motamedian E; Mohammadi M; Shojaosadati SA; Heydari M
    Bioinformatics; 2017 Apr; 33(7):1057-1063. PubMed ID: 28065897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIHBA: a network interdiction approach for metabolic engineering design.
    Jiang S; Wang Y; Kaiser M; Krasnogor N
    Bioinformatics; 2020 Jun; 36(11):3482-3492. PubMed ID: 32167529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks.
    Gerstl MP; Jungreuthmayer C; Zanghellini J
    Bioinformatics; 2015 Jul; 31(13):2232-4. PubMed ID: 25701571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient estimation of graphlet frequency distributions in protein-protein interaction networks.
    Przulj N; Corneil DG; Jurisica I
    Bioinformatics; 2006 Apr; 22(8):974-80. PubMed ID: 16452112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-scale strain designs based on regulatory minimal cut sets.
    Mahadevan R; von Kamp A; Klamt S
    Bioinformatics; 2015 Sep; 31(17):2844-51. PubMed ID: 25913205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.