These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27153761)

  • 1. Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia.
    Ghosh S; Narula K; Sinha A; Ghosh R; Jawa P; Chakraborty N; Chakraborty S
    J Proteomics; 2016 Jun; 143():242-253. PubMed ID: 27153761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of oxalate levels in tomato fruit and consequent metabolic remodeling following overexpression of a fungal oxalate decarboxylase.
    Chakraborty N; Ghosh R; Ghosh S; Narula K; Tayal R; Datta A; Chakraborty S
    Plant Physiol; 2013 May; 162(1):364-78. PubMed ID: 23482874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Proteomics of Oxalate Downregulated Tomatoes Points toward Cross Talk of Signal Components and Metabolic Consequences during Post-harvest Storage.
    Narula K; Ghosh S; Aggarwal PR; Sinha A; Chakraborty N; Chakraborty S
    Front Plant Sci; 2016; 7():1147. PubMed ID: 27555852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato.
    Kesarwani M; Azam M; Natarajan K; Mehta A; Datta A
    J Biol Chem; 2000 Mar; 275(10):7230-8. PubMed ID: 10702293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.
    Kumar V; Chattopadhyay A; Ghosh S; Irfan M; Chakraborty N; Chakraborty S; Datta A
    Plant Biotechnol J; 2016 Jun; 14(6):1394-405. PubMed ID: 26798990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteometabolomic Study of Compatible Interaction in Tomato Fruit Challenged with Sclerotinia rolfsii Illustrates Novel Protein Network during Disease Progression.
    Ghosh S; Narula K; Sinha A; Ghosh R; Jawa P; Chakraborty N; Chakraborty S
    Front Plant Sci; 2016; 7():1034. PubMed ID: 27507973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco.
    da Silva LF; Dias CV; Cidade LC; Mendes JS; Pirovani CP; Alvim FC; Pereira GA; Aragão FJ; Cascardo JC; Costa MG
    Mol Plant Microbe Interact; 2011 Jul; 24(7):839-48. PubMed ID: 21405988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of barley oxalate oxidase confers resistance against Sclerotinia sclerotiorum in transgenic Brassica juncea cv Varuna.
    Verma R; Kaur J
    Transgenic Res; 2021 Apr; 30(2):143-154. PubMed ID: 33527156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment.
    Williams B; Kabbage M; Kim HJ; Britt R; Dickman MB
    PLoS Pathog; 2011 Jun; 7(6):e1002107. PubMed ID: 21738471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of oxalate metabolism in plants for improving food quality and productivity.
    Kumar V; Irfan M; Datta A
    Phytochemistry; 2019 Feb; 158():103-109. PubMed ID: 30500595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dual role of oxalic acid on the resistance of tomato against Botrytis cinerea.
    Sun G; Feng C; Zhang A; Zhang Y; Chang D; Wang Y; Ma Q
    World J Microbiol Biotechnol; 2019 Feb; 35(2):36. PubMed ID: 30712096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced resistance to rice blast and sheath blight in rice (oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis.
    Qi Z; Yu J; Shen L; Yu Z; Yu M; Du Y; Zhang R; Song T; Yin X; Zhou Y; Li H; Wei Q; Liu Y
    Plant Sci; 2017 Dec; 265():51-60. PubMed ID: 29223342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal oxalate decarboxylase activity contributes to Sclerotinia sclerotiorum early infection by affecting both compound appressoria development and function.
    Liang X; Moomaw EW; Rollins JA
    Mol Plant Pathol; 2015 Oct; 16(8):825-36. PubMed ID: 25597873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development.
    Kim KS; Min JY; Dickman MB
    Mol Plant Microbe Interact; 2008 May; 21(5):605-12. PubMed ID: 18393620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase.
    Zhu W; Easthon LM; Reinhardt LA; Tu C; Cohen SE; Silverman DN; Allen KN; Richards NG
    Biochemistry; 2016 Apr; 55(14):2163-73. PubMed ID: 27014926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of oxalic acid by the mycoparasite Coniothyrium minitans plays an important role in interacting with Sclerotinia sclerotiorum.
    Zeng LM; Zhang J; Han YC; Yang L; Wu MD; Jiang DH; Chen W; Li GQ
    Environ Microbiol; 2014 Aug; 16(8):2591-610. PubMed ID: 24467446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase.
    Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y
    Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designer probiotic Lactobacillus plantarum expressing oxalate decarboxylase developed using group II intron degrades intestinal oxalate in hyperoxaluric rats.
    Paul E; Albert A; Ponnusamy S; Mishra SR; Vignesh AG; Sivakumar SM; Sivasamy G; Sadasivam SG
    Microbiol Res; 2018 Oct; 215():65-75. PubMed ID: 30172310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.