BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

596 related articles for article (PubMed ID: 27154001)

  • 1. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InteMAP: Integrated metagenomic assembly pipeline for NGS short reads.
    Lai B; Wang F; Wang X; Duan L; Zhu H
    BMC Bioinformatics; 2015 Aug; 16():244. PubMed ID: 26250558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.
    Huson DH; Tappu R; Bazinet AL; Xie C; Cummings MP; Nieselt K; Williams R
    Microbiome; 2017 Jan; 5(1):11. PubMed ID: 28122610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Omega: an overlap-graph de novo assembler for metagenomics.
    Haider B; Ahn TH; Bushnell B; Chai J; Copeland A; Pan C
    Bioinformatics; 2014 Oct; 30(19):2717-22. PubMed ID: 24947750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth.
    Peng Y; Leung HC; Yiu SM; Chin FY
    Bioinformatics; 2012 Jun; 28(11):1420-8. PubMed ID: 22495754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence assembly using next generation sequencing data--challenges and solutions.
    Chin FY; Leung HC; Yiu SM
    Sci China Life Sci; 2014 Nov; 57(11):1140-8. PubMed ID: 25326069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of short read metagenomic assembly.
    Charuvaka A; Rangwala H
    BMC Genomics; 2011; 12 Suppl 2(Suppl 2):S8. PubMed ID: 21989307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads.
    Warnke JD; Ali HH
    BMC Bioinformatics; 2013; 14 Suppl 11(Suppl 11):S7. PubMed ID: 24564333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ViraPipe: scalable parallel pipeline for viral metagenome analysis from next generation sequencing reads.
    Maarala AI; Bzhalava Z; Dillner J; Heljanko K; Bzhalava D
    Bioinformatics; 2018 Mar; 34(6):928-935. PubMed ID: 29106455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FastEtch: A Fast Sketch-Based Assembler for Genomes.
    Ghosh P; Kalyanaraman A
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1091-1106. PubMed ID: 28910776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IDBA-MTP: A Hybrid Metatranscriptomic Assembler Based on Protein Information.
    Leung HC; Yiu SM; Chin FY
    J Comput Biol; 2015 May; 22(5):367-76. PubMed ID: 25535824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragmentation and Coverage Variation in Viral Metagenome Assemblies, and Their Effect in Diversity Calculations.
    García-López R; Vázquez-Castellanos JF; Moya A
    Front Bioeng Biotechnol; 2015; 3():141. PubMed ID: 26442255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning.
    Afiahayati ; Sato K; Sakakibara Y
    DNA Res; 2015 Feb; 22(1):69-77. PubMed ID: 25431440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes.
    Pericard P; Dufresne Y; Couderc L; Blanquart S; Touzet H
    Bioinformatics; 2018 Feb; 34(4):585-591. PubMed ID: 29040406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IDBA-MT: de novo assembler for metatranscriptomic data generated from next-generation sequencing technology.
    Leung HC; Yiu SM; Parkinson J; Chin FY
    J Comput Biol; 2013 Jul; 20(7):540-50. PubMed ID: 23829653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing.
    Chen Z; Grim CJ; Ramachandran P; Meng J
    Microbiol Spectr; 2024 Jun; 12(6):e0011724. PubMed ID: 38687063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes.
    Papudeshi B; Haggerty JM; Doane M; Morris MM; Walsh K; Beattie DT; Pande D; Zaeri P; Silva GGZ; Thompson F; Edwards RA; Dinsdale EA
    BMC Genomics; 2017 Nov; 18(1):915. PubMed ID: 29183281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenome assembly through clustering of next-generation sequencing data using protein sequences.
    Sim M; Kim J
    J Microbiol Methods; 2015 Feb; 109():180-7. PubMed ID: 25572018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DBG2OLC: Efficient Assembly of Large Genomes Using Long Erroneous Reads of the Third Generation Sequencing Technologies.
    Ye C; Hill CM; Wu S; Ruan J; Ma ZS
    Sci Rep; 2016 Aug; 6():31900. PubMed ID: 27573208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.