BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27154287)

  • 1. Microscopic relaxations in a protein sustained down to 160K in a non-glass forming organic solvent.
    Mamontov E; O'Neill H
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3513-3519. PubMed ID: 27154287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of hydrated proteins and bio-protectants: Caged dynamics, β-relaxation, and α-relaxation.
    Ngai KL; Capaccioli S; Paciaroni A
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3553-3563. PubMed ID: 27155356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contrasting dynamics of fragile and non-fragile polyalcohols through the glass, and dynamical, transitions: A comparison of neutron scattering and dielectric relaxation data for sorbitol and glycerol.
    Migliardo F; Angell CA; Magazù S
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3540-3545. PubMed ID: 27217072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic details of protein dynamics and the role of hydration water.
    Khodadadi S; Sokolov AP
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3546-3552. PubMed ID: 27155577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasielastic neutron scattering in biology: Theory and applications.
    Vural D; Hu X; Lindner B; Jain N; Miao Y; Cheng X; Liu Z; Hong L; Smith JC
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3638-3650. PubMed ID: 27316321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protein-solvent glass transition.
    Doster W
    Biochim Biophys Acta; 2010 Jan; 1804(1):3-14. PubMed ID: 19577666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water response to ganglioside GM1 surface remodelling.
    Brocca P; Rondelli V; Mallamace F; Di Bari MT; Deriu A; Lohstroh W; Del Favero E; Corti M; Cantu' L
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3573-3580. PubMed ID: 27155581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of inelastic neutron scattering vibrational spectra of water clusters and their relevance to hydration water in proteins.
    Eckert J
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3564-3572. PubMed ID: 27531711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of hydration on protein dynamics: combining dielectric and neutron scattering spectroscopy data.
    Khodadadi S; Pawlus S; Sokolov AP
    J Phys Chem B; 2008 Nov; 112(45):14273-80. PubMed ID: 18942780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein dynamics as seen by (quasi) elastic neutron scattering.
    Magazù S; Mezei F; Falus P; Farago B; Mamontov E; Russina M; Migliardo F
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3504-3512. PubMed ID: 27476795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inelastic and quasi-elastic neutron scattering spectrometers in J-PARC.
    Seto H; Itoh S; Yokoo T; Endo H; Nakajima K; Shibata K; Kajimoto R; Ohira-Kawamura S; Nakamura M; Kawakita Y; Nakagawa H; Yamada T
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3651-3660. PubMed ID: 27156489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of coexistence of change of caged dynamics at T(g) and the dynamic transition at T(d) in solvated proteins.
    Capaccioli S; Ngai KL; Ancherbak S; Paciaroni A
    J Phys Chem B; 2012 Feb; 116(6):1745-57. PubMed ID: 22239251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of solvent for the dynamics and the glass transition of proteins.
    Jansson H; Bergman R; Swenson J
    J Phys Chem B; 2011 Apr; 115(14):4099-109. PubMed ID: 21425816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions.
    Cristiglio V; Grillo I; Fomina M; Wien F; Shalaev E; Novikov A; Brassamin S; Réfrégiers M; Pérez J; Hennet L
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3693-3699. PubMed ID: 27155578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-Style Dynamical Transition in a Non-Biological Polymer and a Non-Aqueous Solvent.
    Mamontov E; Sharma VK; Borreguero JM; Tyagi M
    J Phys Chem B; 2016 Mar; 120(12):3232-9. PubMed ID: 26977709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two structural relaxations in protein hydration water and their dynamic crossovers.
    Camisasca G; De Marzio M; Corradini D; Gallo P
    J Chem Phys; 2016 Jul; 145(4):044503. PubMed ID: 27475377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents.
    Lubchenko V; Wolynes PG; Frauenfelder H
    J Phys Chem B; 2005 Apr; 109(15):7488-99. PubMed ID: 16851860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neutron spectrometer concept implementing RENS for studies in life sciences.
    Magazù S; Mamontov E
    Biochim Biophys Acta Gen Subj; 2017 Jan; 1861(1 Pt B):3632-3637. PubMed ID: 27118237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the protein dynamical transition with sugar-based bioprotectant matrices: a neutron scattering study.
    Cornicchi E; Marconi M; Onori G; Paciaroni A
    Biophys J; 2006 Jul; 91(1):289-97. PubMed ID: 16617083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.