BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27154346)

  • 21. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces.
    Benbouziane B; Ribelles P; Aubry C; Martin R; Kharrat P; Riazi A; Langella P; Bermúdez-Humarán LG
    J Biotechnol; 2013 Oct; 168(2):120-9. PubMed ID: 23664884
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recombinant lactic acid bacteria as promising vectors for mucosal vaccination.
    Qiao N; Du G; Zhong X; Sun X
    Exploration (Beijing); 2021 Oct; 1(2):20210026. PubMed ID: 37323212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in microparticle and nanoparticle delivery vehicles for mucosal vaccination.
    McNeela EA; Lavelle EC
    Curr Top Microbiol Immunol; 2012; 354():75-99. PubMed ID: 21904984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application.
    Landete JM
    Crit Rev Biotechnol; 2017 May; 37(3):296-308. PubMed ID: 26918754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering of lactic acid bacteria for delivery of therapeutic proteins and peptides.
    Plavec TV; Berlec A
    Appl Microbiol Biotechnol; 2019 Mar; 103(5):2053-2066. PubMed ID: 30656391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.
    Srivastava A; Gowda DV; Madhunapantula SV; Shinde CG; Iyer M
    APMIS; 2015 Apr; 123(4):275-88. PubMed ID: 25630573
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Live bacterial delivery systems for development of mucosal vaccines.
    Thole JE; van Dalen PJ; Havenith CE; Pouwels PH; Seegers JF; Tielen FD; van der Zee MD; Zegers ND; Shaw M
    Curr Opin Mol Ther; 2000 Feb; 2(1):94-9. PubMed ID: 11249657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterologous protein production and delivery systems for Lactococcus lactis.
    Nouaille S; Ribeiro LA; Miyoshi A; Pontes D; Le Loir Y; Oliveira SC; Langella P; Azevedo V
    Genet Mol Res; 2003 Mar; 2(1):102-11. PubMed ID: 12917806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel applications of recombinant lactic acid bacteria in therapy and in metabolic engineering.
    Berlec A; Strukelj B
    Recent Pat Biotechnol; 2009; 3(2):77-87. PubMed ID: 19519564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria.
    Mohamadzadeh M; Duong T; Hoover T; Klaenhammer TR
    Expert Rev Vaccines; 2008 Mar; 7(2):163-74. PubMed ID: 18324887
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential and opportunities for use of recombinant lactic acid bacteria in human health.
    Hanniffy S; Wiedermann U; Repa A; Mercenier A; Daniel C; Fioramonti J; Tlaskolova H; Kozakova H; Israelsen H; Madsen S; Vrang A; Hols P; Delcour J; Bron P; Kleerebezem M; Wells J
    Adv Appl Microbiol; 2004; 56():1-64. PubMed ID: 15566975
    [No Abstract]   [Full Text] [Related]  

  • 32. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers.
    Takahashi K; Orito N; Tokunoh N; Inoue N
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):5947-5955. PubMed ID: 31175431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mucosal delivery of vaccines in domestic animals.
    Gerdts V; Mutwiri GK; Tikoo SK; Babiuk LA
    Vet Res; 2006; 37(3):487-510. PubMed ID: 16611560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes.
    Pouwels PH; Leer RJ; Shaw M; Heijne den Bak-Glashouwer MJ; Tielen FD; Smit E; Martinez B; Jore J; Conway PL
    Int J Food Microbiol; 1998 May; 41(2):155-67. PubMed ID: 9704864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Live-attenuated influenza viruses as delivery vectors for Chlamydia vaccines.
    He Q; Martinez-Sobrido L; Eko FO; Palese P; Garcia-Sastre A; Lyn D; Okenu D; Bandea C; Ananaba GA; Black CM; Igietseme JU
    Immunology; 2007 Sep; 122(1):28-37. PubMed ID: 17451464
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols.
    Coelho-Rocha ND; Barroso FAL; Tavares LM; Dos Santos ESS; Azevedo V; Drumond MM; Mancha-Agresti P
    Methods Mol Biol; 2021; 2197():285-304. PubMed ID: 32827144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent developments in mucosal delivery of pDNA vaccines.
    Barnes AG; Barnfield C; Brew R; Klavinskis LS
    Curr Opin Mol Ther; 2000 Feb; 2(1):87-93. PubMed ID: 11249656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Needle-free vaccine delivery.
    Giudice EL; Campbell JD
    Adv Drug Deliv Rev; 2006 Apr; 58(1):68-89. PubMed ID: 16564111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dry powder vaccines for mucosal administration: critical factors in manufacture and delivery.
    Wang SH; Thompson AL; Hickey AJ; Staats HF
    Curr Top Microbiol Immunol; 2012; 354():121-56. PubMed ID: 21822816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria.
    Gaspar P; Carvalho AL; Vinga S; Santos H; Neves AR
    Biotechnol Adv; 2013 Nov; 31(6):764-88. PubMed ID: 23567148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.