BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 27154356)

  • 1. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+].
    DeSouza-Vieira T; Guimarães-Costa A; Rochael NC; Lira MN; Nascimento MT; Lima-Gomez PS; Mariante RM; Persechini PM; Saraiva EM
    J Leukoc Biol; 2016 Oct; 100(4):801-810. PubMed ID: 27154356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites.
    Rochael NC; Guimarães-Costa AB; Nascimento MT; DeSouza-Vieira TS; Oliveira MP; Garcia e Souza LF; Oliveira MF; Saraiva EM
    Sci Rep; 2015 Dec; 5():18302. PubMed ID: 26673780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx.
    Douda DN; Khan MA; Grasemann H; Palaniyar N
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2817-22. PubMed ID: 25730848
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Díaz-Godínez C; Fonseca Z; Néquiz M; Laclette JP; Rosales C; Carrero JC
    Front Cell Infect Microbiol; 2018; 8():184. PubMed ID: 29922599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase, MPO, NE, ERK1/2, p38 MAPK and Ca2+ influx are essential for Cryptosporidium parvum-induced NET formation.
    Muñoz-Caro T; Lendner M; Daugschies A; Hermosilla C; Taubert A
    Dev Comp Immunol; 2015 Oct; 52(2):245-54. PubMed ID: 26026247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis.
    Nadesalingam A; Chen JHK; Farahvash A; Khan MA
    Front Immunol; 2018; 9():359. PubMed ID: 29593709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis.
    Khan MA; Farahvash A; Douda DN; Licht JC; Grasemann H; Sweezey N; Palaniyar N
    Sci Rep; 2017 Jun; 7(1):3409. PubMed ID: 28611461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways.
    Tatsiy O; McDonald PP
    Front Immunol; 2018; 9():2036. PubMed ID: 30279690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of PTEN in neutrophil extracellular trap formation.
    Teimourian S; Moghanloo E
    Mol Immunol; 2015 Aug; 66(2):319-24. PubMed ID: 25913476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UVA and UVB radiation induce the formation of neutrophil extracellular traps by human polymorphonuclear cells.
    Zawrotniak M; Bartnicka D; Rapala-Kozik M
    J Photochem Photobiol B; 2019 Jul; 196():111511. PubMed ID: 31129510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps.
    Vorobjeva N; Dagil Y; Pashenkov M; Pinegin B; Chernyak B
    Int Immunopharmacol; 2023 Jan; 114():109448. PubMed ID: 36436472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-β2GPI/β2GPI induces human neutrophils to generate NETs by relying on ROS.
    You Y; Liu Y; Li F; Mu F; Zha C
    Cell Biochem Funct; 2019 Mar; 37(2):56-61. PubMed ID: 30701573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diverse stimuli engage different neutrophil extracellular trap pathways.
    Kenny EF; Herzig A; Krüger R; Muth A; Mondal S; Thompson PR; Brinkmann V; Bernuth HV; Zychlinsky A
    Elife; 2017 Jun; 6():. PubMed ID: 28574339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histone Acetylation Promotes Neutrophil Extracellular Trap Formation.
    Hamam HJ; Khan MA; Palaniyar N
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30669408
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Fonseca Z; Díaz-Godínez C; Mora N; Alemán OR; Uribe-Querol E; Carrero JC; Rosales C
    Front Cell Infect Microbiol; 2018; 8():226. PubMed ID: 30023352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1.
    Behnen M; Leschczyk C; Möller S; Batel T; Klinger M; Solbach W; Laskay T
    J Immunol; 2014 Aug; 193(4):1954-65. PubMed ID: 25024378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps.
    Hasan R; Rink L; Haase H
    Innate Immun; 2013 Jun; 19(3):253-64. PubMed ID: 23008348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different pathways leading to activation of extracellular signal-regulated kinase and p38 MAP kinase by formyl-methionyl-leucyl-phenylalanine or platelet activating factor in human neutrophils.
    Chen LW; Lin MW; Hsu CM
    J Biomed Sci; 2005; 12(2):311-9. PubMed ID: 15917990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Adhesion and Substrate Elasticity on Neutrophil Extracellular Trap Formation.
    Erpenbeck L; Gruhn AL; Kudryasheva G; Günay G; Meyer D; Busse J; Neubert E; Schön MP; Rehfeldt F; Kruss S
    Front Immunol; 2019; 10():2320. PubMed ID: 31632402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine A.
    Gupta AK; Giaglis S; Hasler P; Hahn S
    PLoS One; 2014; 9(5):e97088. PubMed ID: 24819773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.