BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 27154499)

  • 1. High-efficiency preparation of poly(2-methacryloyloxyethyl phosphorylcholine) grafting layer on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization in an aqueous solution in the presence of inorganic salt additives.
    Shiojima T; Inoue Y; Kyomoto M; Ishihara K
    Acta Biomater; 2016 Aug; 40():38-45. PubMed ID: 27154499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced platelets and bacteria adhesion on poly(ether ether ketone) by photoinduced and self-initiated graft polymerization of 2-methacryloyloxyethyl phosphorylcholine.
    Tateishi T; Kyomoto M; Kakinoki S; Yamaoka T; Ishihara K
    J Biomed Mater Res A; 2014 May; 102(5):1342-9. PubMed ID: 23720384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly(2-methacryloyloxyethyl phosphorylcholine).
    Kyomoto M; Moro T; Yamane S; Hashimoto M; Takatori Y; Ishihara K
    Biomaterials; 2013 Oct; 34(32):7829-39. PubMed ID: 23891520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-initiated surface grafting with poly(2-methacryloyloxyethyl phosphorylcholine) on poly(ether-ether-ketone).
    Kyomoto M; Moro T; Takatori Y; Kawaguchi H; Nakamura K; Ishihara K
    Biomaterials; 2010 Feb; 31(6):1017-24. PubMed ID: 19906420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation.
    Kyomoto M; Ishihara K
    ACS Appl Mater Interfaces; 2009 Mar; 1(3):537-42. PubMed ID: 20355972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads.
    Yamane S; Kyomoto M; Moro T; Hashimoto M; Takatori Y; Tanaka S; Ishihara K
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1028-1037. PubMed ID: 28485068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.
    Inoue Y; Onodera Y; Ishihara K
    Colloids Surf B Biointerfaces; 2016 May; 141():507-512. PubMed ID: 26896657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of poly(ether ether ketone) with methacryloyl-functionalized phospholipid polymers via self-initiation graft polymerization.
    Kawasaki Y; Iwasaki Y
    J Biomater Sci Polym Ed; 2014; 25(9):895-906. PubMed ID: 24766535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term evaluation of thromboresistance of a poly(ether ether ketone) (PEEK) mechanical heart valve with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted surface in a porcine aortic valve replacement model.
    Kambe Y; Mahara A; Tanaka H; Kakinoki S; Fukazawa K; Liu Y; Kyomoto M; Minatoya K; Ishihara K; Yamaoka T
    J Biomed Mater Res A; 2019 May; 107(5):1052-1063. PubMed ID: 30688402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(2-methacryloyloxyethyl phosphorylcholine) grafting and vitamin E blending for high wear resistance and oxidative stability of orthopedic bearings.
    Kyomoto M; Moro T; Yamane S; Watanabe K; Hashimoto M; Takatori Y; Tanaka S; Ishihara K
    Biomaterials; 2014 Aug; 35(25):6677-86. PubMed ID: 24836953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention of bacterial adhesion and biofilm formation on a vitamin E-blended, cross-linked polyethylene surface with a poly(2-methacryloyloxyethyl phosphorylcholine) layer.
    Kyomoto M; Shobuike T; Moro T; Yamane S; Takatori Y; Tanaka S; Miyamoto H; Ishihara K
    Acta Biomater; 2015 Sep; 24():24-34. PubMed ID: 26050636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine).
    Ishihara K; Mu M; Konno T; Inoue Y; Fukazawa K
    J Biomater Sci Polym Ed; 2017; 28(10-12):884-899. PubMed ID: 28276997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of UV-irradiation intensity on graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on orthopedic bearing substrate.
    Kyomoto M; Moro T; Yamane S; Hashimoto M; Takatori Y; Ishihara K
    J Biomed Mater Res A; 2014 Sep; 102(9):3012-23. PubMed ID: 24124003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of grafted phosphorylcholine polymer layers as specific recognition ligands for C-reactive protein focused on grafting density and thickness to achieve highly sensitive detection.
    Kamon Y; Kitayama Y; Itakura AN; Fukazawa K; Ishihara K; Takeuchi T
    Phys Chem Chem Phys; 2015 Apr; 17(15):9951-8. PubMed ID: 25783194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of 2-methacryloyloxyethyl phosphorylcholine concentration on photo-induced graft polymerization of polyethylene in reducing the wear of orthopaedic bearing surface.
    Kyomoto M; Moro T; Miyaji F; Hashimoto M; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K
    J Biomed Mater Res A; 2008 Aug; 86(2):439-47. PubMed ID: 17975818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Durable Lubricity of Photo-Cross-Linked Zwitterionic Polymer Brushes Supported by Poly(ether ether ketone) Substrate.
    Nakano H; Noguchi Y; Kakinoki S; Yamakawa M; Osaka I; Iwasaki Y
    ACS Appl Bio Mater; 2020 Feb; 3(2):1071-1078. PubMed ID: 35019309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cartilage-mimicking, high-density brush structure improves wear resistance of crosslinked polyethylene: a pilot study.
    Kyomoto M; Moro T; Takatori Y; Kawaguchi H; Ishihara K
    Clin Orthop Relat Res; 2011 Aug; 469(8):2327-36. PubMed ID: 21132412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrated phospholipid polymer-grafted layer prevents lipid-related oxidative degradation of cross-linked polyethylene.
    Kyomoto M; Moro T; Yamane S; Takatori Y; Tanaka S; Ishihara K
    Biomaterials; 2017 Jan; 112():122-132. PubMed ID: 27760396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints.
    Kyomoto M; Moro T; Miyaji F; Hashimoto M; Kawaguchi H; Takatori Y; Nakamura K; Ishihara K
    J Biomed Mater Res A; 2009 Aug; 90(2):362-71. PubMed ID: 18521890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of dehydration and rehydration on the lubrication properties of phospholipid polymer-grafted cross-linked polyethylene.
    Yarimitsu S; Moro T; Kyomoto M; Watanabe K; Tanaka S; Ishihara K; Murakami T
    Proc Inst Mech Eng H; 2015 Jul; 229(7):506-14. PubMed ID: 26036469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.