These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
993 related articles for article (PubMed ID: 27154500)
1. Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA. Davoodi P; Srinivasan MP; Wang CH Acta Biomater; 2016 Jul; 39():79-93. PubMed ID: 27154500 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. Chen L; Ji F; Bao Y; Xia J; Guo L; Wang J; Li Y Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):418-429. PubMed ID: 27770912 [TBL] [Abstract][Full Text] [Related]
3. Smart pH-sensitive micelles based on redox degradable polymers as DOX/GNPs carriers for controlled drug release and CT imaging. Xiong D; Zhang X; Peng S; Gu H; Zhang L Colloids Surf B Biointerfaces; 2018 Mar; 163():29-40. PubMed ID: 29278801 [TBL] [Abstract][Full Text] [Related]
4. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery. Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197 [TBL] [Abstract][Full Text] [Related]
5. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Tao X; Gou J; Zhang Q; Tan X; Ren T; Yao Q; Tian B; Kou L; Zhang L; Tang X Biomater Sci; 2018 Jun; 6(7):1869-1881. PubMed ID: 29808221 [TBL] [Abstract][Full Text] [Related]
6. Zwitterionic nanoparticles constructed from bioreducible RAFT-ROP double head agent for shell shedding triggered intracellular drug delivery. Huang P; Liu J; Wang W; Zhang Y; Zhao F; Kong D; Liu J; Dong A Acta Biomater; 2016 Aug; 40():263-272. PubMed ID: 26607767 [TBL] [Abstract][Full Text] [Related]
7. Balancing the stability and drug release of polymer micelles by the coordination of dual-sensitive cleavable bonds in cross-linked core. Deng H; Zhang Y; Wang X; Jianhuazhang ; Cao Y; Liu J; Liu J; Deng L; Dong A Acta Biomater; 2015 Jan; 11():126-36. PubMed ID: 25288518 [TBL] [Abstract][Full Text] [Related]
8. Shell-sheddable micelles based on dextran-SS-poly(epsilon-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin. Sun H; Guo B; Li X; Cheng R; Meng F; Liu H; Zhong Z Biomacromolecules; 2010 Apr; 11(4):848-54. PubMed ID: 20205476 [TBL] [Abstract][Full Text] [Related]
9. Bioreducible poly(2-ethyl-2-oxazoline)-PLA-PEI-SS triblock copolymer micelles for co-delivery of DNA minicircles and Doxorubicin. Gaspar VM; Baril P; Costa EC; de Melo-Diogo D; Foucher F; Queiroz JA; Sousa F; Pichon C; Correia IJ J Control Release; 2015 Sep; 213():175-191. PubMed ID: 26184050 [TBL] [Abstract][Full Text] [Related]
10. mPEGylated solanesol micelles as redox-responsive nanocarriers with synergistic anticancer effect. Qin B; Liu L; Wu X; Liang F; Hou T; Pan Y; Song S Acta Biomater; 2017 Dec; 64():211-222. PubMed ID: 28963017 [TBL] [Abstract][Full Text] [Related]
11. Self-assembled polyethylenimine-graft-poly(epsilon-caprolactone) micelles as potential dual carriers of genes and anticancer drugs. Qiu LY; Bae YH Biomaterials; 2007 Oct; 28(28):4132-42. PubMed ID: 17582489 [TBL] [Abstract][Full Text] [Related]
12. Polyethylenimine-based amphiphilic core-shell nanoparticles: study of gene delivery and intracellular trafficking. Siu YS; Li L; Leung MF; Lee KL; Li P Biointerphases; 2012 Dec; 7(1-4):16. PubMed ID: 22589059 [TBL] [Abstract][Full Text] [Related]
13. Fine tuning micellar core-forming block of poly(ethylene glycol)-block-poly(ε-caprolactone) amphiphilic copolymers based on chemical modification for the solubilization and delivery of doxorubicin. Yan J; Ye Z; Chen M; Liu Z; Xiao Y; Zhang Y; Zhou Y; Tan W; Lang M Biomacromolecules; 2011 Jul; 12(7):2562-72. PubMed ID: 21598958 [TBL] [Abstract][Full Text] [Related]
14. Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG-PCLNanoparticles. Danafar H; Rostamizadeh K; Davaran S; Hamidi M Drug Dev Ind Pharm; 2017 Nov; 43(11):1908-1918. PubMed ID: 28737462 [TBL] [Abstract][Full Text] [Related]
15. Y-shaped copolymers of poly(ethylene glycol)-poly(ε-caprolactone) with ketal bond as the branchpoint for drug delivery. Zhang Y; Lu Y; Cao M; Chen P; Yang B; Miao J; Xia R; Qian J Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():554-564. PubMed ID: 30274088 [TBL] [Abstract][Full Text] [Related]
16. Ligand-directed reduction-sensitive shell-sheddable biodegradable micelles actively deliver doxorubicin into the nuclei of target cancer cells. Zhong Y; Yang W; Sun H; Cheng R; Meng F; Deng C; Zhong Z Biomacromolecules; 2013 Oct; 14(10):3723-30. PubMed ID: 23998942 [TBL] [Abstract][Full Text] [Related]
17. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy. Yan T; Li D; Li J; Cheng F; Cheng J; Huang Y; He J Colloids Surf B Biointerfaces; 2016 Sep; 145():526-538. PubMed ID: 27281238 [TBL] [Abstract][Full Text] [Related]
18. Reverse poly(ε-caprolactone)-g-dextran graft copolymers. Nano-carriers for intracellular uptake of anticancer drugs. Delorme V; Lichon L; Mahindad H; Hunger S; Laroui N; Daurat M; Godefroy A; Coudane J; Gary-Bobo M; Van Den Berghe H Carbohydr Polym; 2020 Mar; 232():115764. PubMed ID: 31952581 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the Sequential Actions of Doxorubicin and p53 on Tumor Cell Growth Via Branched Polyethylenimine-β-cyclodextrin Conjugates. Xie B; Peng J; Wang S; Zhang X; Nie H Ann Biomed Eng; 2016 Nov; 44(11):3372-3383. PubMed ID: 27122200 [TBL] [Abstract][Full Text] [Related]
20. Development of novel self-assembled polymeric micelles from partially hydrolysed poly(2-ethyl-2-oxazoline)-co-PEI-b-PCL block copolymer as non-viral vectors for plasmid DNA in vitro transfection. Kara A; Ozturk N; Esendagli G; Ozkose UU; Gulyuz S; Yilmaz O; Telci D; Bozkir A; Vural I Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S264-S273. PubMed ID: 30032650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]