BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27154753)

  • 1. Synthesis of B- and C-ring-modified lithocholic acid analogues as potential sialyltransferase inhibitors.
    Abdu-Allah HH; Chang TT; Li WS
    Steroids; 2016 Aug; 112():54-61. PubMed ID: 27154753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological evaluation of sulfonate and sulfate analogues of lithocholic acid: A bioisosterism-guided approach towards the discovery of potential sialyltransferase inhibitors for antimetastatic study.
    Perez SJLP; Chen CL; Chang TT; Li WS
    Bioorg Med Chem Lett; 2024 Jun; 105():129760. PubMed ID: 38641151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lithocholic acid analogues, new and potent alpha-2,3-sialyltransferase inhibitors.
    Chang KH; Lee L; Chen J; Li WS
    Chem Commun (Camb); 2006 Feb; (6):629-31. PubMed ID: 16446832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways.
    Chen JY; Tang YA; Huang SM; Juan HF; Wu LW; Sun YC; Wang SC; Wu KW; Balraj G; Chang TT; Li WS; Cheng HC; Wang YC
    Cancer Res; 2011 Jan; 71(2):473-83. PubMed ID: 21224350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin-mediated signaling.
    Chiang CH; Wang CH; Chang HC; More SV; Li WS; Hung WC
    J Cell Physiol; 2010 May; 223(2):492-9. PubMed ID: 20112294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthesis and antitumor activity of lithocholic acid and its derivatives.
    He XL; Xing Y; Gu XZ; Xiao JX; Wang YY; Yi Z; Qiu WW
    Steroids; 2017 Sep; 125():54-60. PubMed ID: 28648585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological evaluation of 4,4-dimethyl lithocholic acid derivatives as novel inhibitors of protein tyrosine phosphatase 1B.
    He HB; Gao LX; Deng QF; Ma WP; Tang CL; Qiu WW; Tang J; Li JY; Li J; Yang F
    Bioorg Med Chem Lett; 2012 Dec; 22(23):7237-42. PubMed ID: 23067554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Novel, Potent, and Selective Sialyltransferase Inhibitor for Suppressing Cancer Metastasis.
    Tsai HE; Chen CL; Chang TT; Fu CW; Chen WC; Perez SJLP; Hsiao PW; Tai MH; Li WS
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of bisubstrate and donor analogues of sialyltransferase and their inhibitory activities.
    Izumi M; Wada K; Yuasa H; Hashimoto H
    J Org Chem; 2005 Oct; 70(22):8817-24. PubMed ID: 16238314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of ester-linked lithocholic acid dimers.
    Nahar L; Turner AB
    Steroids; 2003 Dec; 68(14):1157-61. PubMed ID: 14643877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sialyltransferase inhibition and recent advances.
    Wang L; Liu Y; Wu L; Sun XL
    Biochim Biophys Acta; 2016 Jan; 1864(1):143-53. PubMed ID: 26192491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Synthesis of Uncommon Natural Bile Acids: The 9α-Hydroxy Derivatives of Chenodeoxycholic and Lithocholic Acids.
    Iida T; Namegawa K; Nakane N; Iida K; Hofmann AF; Omura K
    Chem Pharm Bull (Tokyo); 2016 Sep; 64(9):1397-402. PubMed ID: 27319285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-ketocholanoic acid is the major in vitro human hepatic microsomal metabolite of lithocholic acid.
    Deo AK; Bandiera SM
    Drug Metab Dispos; 2009 Sep; 37(9):1938-47. PubMed ID: 19487251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective synthesis of tranylcypromine analogues as lysine demethylase (LSD1) inhibitors.
    Benelkebir H; Hodgkinson C; Duriez PJ; Hayden AL; Bulleid RA; Crabb SJ; Packham G; Ganesan A
    Bioorg Med Chem; 2011 Jun; 19(12):3709-16. PubMed ID: 21382717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of flavonoids as sialyltransferase inhibitors.
    Hidari KI; Oyama K; Ito G; Nakayama M; Inai M; Goto S; Kanai Y; Watanabe K; Yoshida K; Furuta T; Kan T; Suzuki T
    Biochem Biophys Res Commun; 2009 May; 382(3):609-13. PubMed ID: 19303395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and potent antifolate activity and cytotoxicity of B-ring deaza analogues of the nonpolyglutamatable dihydrofolate reductase inhibitor Nalpha-(4-amino-4-deoxypteroyl)-Ndelta-hemiphthaloyl- L-ornithine (PT523).
    Rosowsky A; Wright JE; Vaidya CM; Bader H; Forsch RA; Mota CE; Pardo J; Chen CS; Chen YN
    J Med Chem; 1998 Dec; 41(26):5310-9. PubMed ID: 9857098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithocholic acid and derivatives: Antibacterial activity.
    do Nascimento PG; Lemos TL; Almeida MC; de Souza JM; Bizerra AM; Santiago GM; da Costa JG; Coutinho HD
    Steroids; 2015 Dec; 104():8-15. PubMed ID: 26216208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Substituted Cyclopentane-CMP Conjugates as Potent Sialyltransferase Inhibitors.
    Li W; Niu Y; Xiong DC; Cao X; Ye XS
    J Med Chem; 2015 Oct; 58(20):7972-90. PubMed ID: 26406919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational characterisation of the interactions between human ST6Gal I and transition-state analogue inhibitors: insights for inhibitor design.
    Montgomery A; Szabo R; Skropeta D; Yu H
    J Mol Recognit; 2016 May; 29(5):210-22. PubMed ID: 26669681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and activity evaluation of the cyclic dipeptides arylidene N-alkoxydiketopiperazines.
    Tian X; Feng J; Fan SM; Zhen XL; Han JR; Liu SX
    Bioorg Med Chem; 2016 Nov; 24(21):5197-5205. PubMed ID: 27594550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.