BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27155065)

  • 1. Killing two birds with one stone: Model plant systems as a tool to teach the fundamental concepts of gene expression while analyzing biological data.
    Makarevitch I; Martinez-Vaz B
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):166-173. PubMed ID: 27155065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational inference of gene regulatory networks: Approaches, limitations and opportunities.
    Banf M; Rhee SY
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):41-52. PubMed ID: 27641093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transposable element influences on gene expression in plants.
    Hirsch CD; Springer NM
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):157-165. PubMed ID: 27235540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Authentic Research Experience and "Big Data" Analysis in the Classroom: Maize Response to Abiotic Stress.
    Makarevitch I; Frechette C; Wiatros N
    CBE Life Sci Educ; 2015; 14(3):. PubMed ID: 26163561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putting DNA methylation in context: from genomes to gene expression in plants.
    Niederhuth CE; Schmitz RJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):149-156. PubMed ID: 27590871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards genome-wide prediction and characterization of enhancers in plants.
    Marand AP; Zhang T; Zhu B; Jiang J
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks.
    Swift J; Coruzzi GM
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):75-83. PubMed ID: 27546191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant responses to abiotic stress: The chromatin context of transcriptional regulation.
    Asensi-Fabado MA; Amtmann A; Perrella G
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):106-122. PubMed ID: 27487458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of plant transcription factor target sequences.
    Franco-Zorrilla JM; Solano R
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):21-30. PubMed ID: 27155066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unraveling gene function in agricultural species using gene co-expression networks.
    Schaefer RJ; Michno JM; Myers CL
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):53-63. PubMed ID: 27485388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.
    Lehti-Shiu MD; Panchy N; Wang P; Uygun S; Shiu SH
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):3-20. PubMed ID: 27522016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis.
    Muhammad D; Schmittling S; Williams C; Long TA
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):64-74. PubMed ID: 27485161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial control of plant gene expression.
    Brkljacic J; Grotewold E
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):31-40. PubMed ID: 27427484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics and bioinformatics resources for crop improvement.
    Mochida K; Shinozaki K
    Plant Cell Physiol; 2010 Apr; 51(4):497-523. PubMed ID: 20208064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network.
    Hernando CE; Romanowski A; Yanovsky MJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):84-94. PubMed ID: 27412912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone variants in plant transcriptional regulation.
    Jiang D; Berger F
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):123-130. PubMed ID: 27412913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing gene expression in sea star eggs and embryos using bioinformatics.
    Bates L; Wiseman E; Carroll DJ
    Methods Cell Biol; 2019; 150():471-483. PubMed ID: 30777190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of alternative splicing in plant genomes.
    Song QA; Catlin NS; Brad Barbazuk W; Li S
    Gene; 2019 Feb; 685():186-195. PubMed ID: 30321657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana.
    Wils CR; Kaufmann K
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):95-105. PubMed ID: 27487457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.
    Bolser D; Staines DM; Pritchard E; Kersey P
    Methods Mol Biol; 2016; 1374():115-40. PubMed ID: 26519403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.