BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27155066)

  • 1. Identification of plant transcription factor target sequences.
    Franco-Zorrilla JM; Solano R
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):21-30. PubMed ID: 27155066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks.
    Swift J; Coruzzi GM
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):75-83. PubMed ID: 27546191
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards genome-wide prediction and characterization of enhancers in plants.
    Marand AP; Zhang T; Zhu B; Jiang J
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):131-139. PubMed ID: 27321818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial control of plant gene expression.
    Brkljacic J; Grotewold E
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):31-40. PubMed ID: 27427484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families.
    Lehti-Shiu MD; Panchy N; Wang P; Uygun S; Shiu SH
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):3-20. PubMed ID: 27522016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis.
    Muhammad D; Schmittling S; Williams C; Long TA
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):64-74. PubMed ID: 27485161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants.
    Chow CN; Zheng HQ; Wu NY; Chien CH; Huang HD; Lee TY; Chiang-Hsieh YF; Hou PF; Yang TY; Chang WC
    Nucleic Acids Res; 2016 Jan; 44(D1):D1154-60. PubMed ID: 26476450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PlantPAN3.0: a new and updated resource for reconstructing transcriptional regulatory networks from ChIP-seq experiments in plants.
    Chow CN; Lee TY; Hung YC; Li GZ; Tseng KC; Liu YH; Kuo PL; Zheng HQ; Chang WC
    Nucleic Acids Res; 2019 Jan; 47(D1):D1155-D1163. PubMed ID: 30395277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network.
    Hernando CE; Romanowski A; Yanovsky MJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):84-94. PubMed ID: 27412912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana.
    Wils CR; Kaufmann K
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):95-105. PubMed ID: 27487457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putting DNA methylation in context: from genomes to gene expression in plants.
    Niederhuth CE; Schmitz RJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):149-156. PubMed ID: 27590871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational inference of gene regulatory networks: Approaches, limitations and opportunities.
    Banf M; Rhee SY
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):41-52. PubMed ID: 27641093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Genome-Wide TF Binding and Gene Expression Data to Characterize Gene Regulatory Networks in Plant Development.
    Chen D; Kaufmann K
    Methods Mol Biol; 2017; 1629():239-269. PubMed ID: 28623590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Killing two birds with one stone: Model plant systems as a tool to teach the fundamental concepts of gene expression while analyzing biological data.
    Makarevitch I; Martinez-Vaz B
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):166-173. PubMed ID: 27155065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.
    Varala K; Marshall-Colón A; Cirrone J; Brooks MD; Pasquino AV; Léran S; Mittal S; Rock TM; Edwards MB; Kim GJ; Ruffel S; McCombie WR; Shasha D; Coruzzi GM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6494-6499. PubMed ID: 29769331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing and characterizing in vivo DNA-binding events and direct target genes of plant transcription factors.
    Muiño JM; Angenent GC; Kaufmann K
    Methods Mol Biol; 2011; 754():293-305. PubMed ID: 21720960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposable element influences on gene expression in plants.
    Hirsch CD; Springer NM
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):157-165. PubMed ID: 27235540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing the Architecture of Plant Gene Regulatory Networks.
    Yang F; Ouma WZ; Li W; Doseff AI; Grotewold E
    Methods Enzymol; 2016; 576():251-304. PubMed ID: 27480690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant responses to abiotic stress: The chromatin context of transcriptional regulation.
    Asensi-Fabado MA; Amtmann A; Perrella G
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):106-122. PubMed ID: 27487458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling gene function in agricultural species using gene co-expression networks.
    Schaefer RJ; Michno JM; Myers CL
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):53-63. PubMed ID: 27485388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.