These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 27155357)
1. Differential expression of microRNAs and potential targets under drought stress in barley. Ferdous J; Sanchez-Ferrero JC; Langridge P; Milne L; Chowdhury J; Brien C; Tricker PJ Plant Cell Environ; 2017 Jan; 40(1):11-24. PubMed ID: 27155357 [TBL] [Abstract][Full Text] [Related]
2. Identification of reference genes for quantitative expression analysis of microRNAs and mRNAs in barley under various stress conditions. Ferdous J; Li Y; Reid N; Langridge P; Shi BJ; Tricker PJ PLoS One; 2015; 10(3):e0118503. PubMed ID: 25793505 [TBL] [Abstract][Full Text] [Related]
3. Global Identification of MicroRNAs and Their Targets in Barley under Salinity Stress. Deng P; Wang L; Cui L; Feng K; Liu F; Du X; Tong W; Nie X; Ji W; Weining S PLoS One; 2015; 10(9):e0137990. PubMed ID: 26372557 [TBL] [Abstract][Full Text] [Related]
4. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance. Liang J; Chen X; Deng G; Pan Z; Zhang H; Li Q; Yang K; Long H; Yu M BMC Genomics; 2017 Oct; 18(1):775. PubMed ID: 29020945 [TBL] [Abstract][Full Text] [Related]
5. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background. Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720 [TBL] [Abstract][Full Text] [Related]
6. Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley. Qiu CW; Liu L; Feng X; Hao PF; He X; Cao F; Wu F Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32316632 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Hackenberg M; Gustafson P; Langridge P; Shi BJ Plant Biotechnol J; 2015 Jan; 13(1):2-13. PubMed ID: 24975557 [TBL] [Abstract][Full Text] [Related]
8. A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Smoczynska A; Pacak AM; Nuc P; Swida-Barteczka A; Kruszka K; Karlowski WM; Jarmolowski A; Szweykowska-Kulinska Z Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365647 [TBL] [Abstract][Full Text] [Related]
9. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. Hübner S; Korol AB; Schmid KJ BMC Plant Biol; 2015 Jun; 15():134. PubMed ID: 26055625 [TBL] [Abstract][Full Text] [Related]
10. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. He X; Zeng J; Cao F; Ahmed IM; Zhang G; Vincze E; Wu F J Exp Bot; 2015 Dec; 66(22):7405-19. PubMed ID: 26417018 [TBL] [Abstract][Full Text] [Related]
11. Global analysis of uncapped mRNA changes under drought stress and microRNA-dependent endonucleolytic cleavages in foxtail millet. Yi F; Chen J; Yu J BMC Plant Biol; 2015 Oct; 15():241. PubMed ID: 26444665 [TBL] [Abstract][Full Text] [Related]
12. Barley primary microRNA expression pattern is affected by soil water availability. Swida-Barteczka A; Kruszka K; Grabowska A; Pacak A; Jarmolowski A; Kurowska M; Szarejko I; Szweykowska-Kulinska Z Acta Biochim Pol; 2016; 63(4):817-824. PubMed ID: 27770573 [TBL] [Abstract][Full Text] [Related]
13. Boron stress responsive microRNAs and their targets in barley. Ozhuner E; Eldem V; Ipek A; Okay S; Sakcali S; Zhang B; Boke H; Unver T PLoS One; 2013; 8(3):e59543. PubMed ID: 23555702 [TBL] [Abstract][Full Text] [Related]
14. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern. Rezaei MK; Shobbar ZS; Shahbazi M; Abedini R; Zare S J Plant Physiol; 2013 Sep; 170(14):1277-84. PubMed ID: 23664583 [TBL] [Abstract][Full Text] [Related]
15. miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Kantar M; Lucas SJ; Budak H Planta; 2011 Mar; 233(3):471-84. PubMed ID: 21069383 [TBL] [Abstract][Full Text] [Related]
16. ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. Seiler C; Harshavardhan VT; Rajesh K; Reddy PS; Strickert M; Rolletschek H; Scholz U; Wobus U; Sreenivasulu N J Exp Bot; 2011 May; 62(8):2615-32. PubMed ID: 21289079 [TBL] [Abstract][Full Text] [Related]
17. Identification of four functionally important microRNA families with contrasting differential expression profiles between drought-tolerant and susceptible rice leaf at vegetative stage. Cheah BH; Nadarajah K; Divate MD; Wickneswari R BMC Genomics; 2015 Sep; 16(1):692. PubMed ID: 26369665 [TBL] [Abstract][Full Text] [Related]
18. microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. Bai B; Shi B; Hou N; Cao Y; Meng Y; Bian H; Zhu M; Han N BMC Plant Biol; 2017 Sep; 17(1):150. PubMed ID: 28877679 [TBL] [Abstract][Full Text] [Related]
20. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]