These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27155413)

  • 1. Distribution and mode of occurrence of uranium in bottom ash derived from high-germanium coals.
    Sun Y; Qi G; Lei X; Xu H; Li L; Yuan C; Wang Y
    J Environ Sci (China); 2016 May; 43():91-98. PubMed ID: 27155413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium speciation in coal bottom ash investigated via X-ray absorption fine structure and X-ray photoelectron spectra.
    Sun Y; Wu M; Zheng L; Wang B; Wang Y
    J Environ Sci (China); 2018 Dec; 74():88-94. PubMed ID: 30340678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. U and Th in some brown coals of Serbia and Montenegro and their environmental impact.
    Zivotić D; Grzetić I; Lorenz H; Simić V
    Environ Sci Pollut Res Int; 2008 Mar; 15(2):155-61. PubMed ID: 18380235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and radiological characterization of fly and bottom ash landfill of the former sulfate pulp factory Plaški and its surroundings.
    Oreščanin V; Kollar R; Buben K; Mikelic IL; Kollar K; Kollar M; Medunic G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(11):1592-606. PubMed ID: 22702819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disequilibrium between uranium and its progeny in the Lake Issyk-Kul system (Kyrgyzstan) under a combined effect of natural and manmade processes.
    Gavshin VM; Melgunov MS; Sukhorukov FV; Bobrov VA; Kalugin IA; Klerkx J
    J Environ Radioact; 2005; 83(1):61-74. PubMed ID: 15935909
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Chuangao W; Ruirui L; Jinfeng L; Zhijun H; Jingshun P; Zhiping L; Ling C; Zhongwen W; Ziqiang P
    J Environ Radioact; 2017 May; 171():132-137. PubMed ID: 28242538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Radioactive waste due to electric power and mineral fertiliser production].
    Marović G; Sencar J; Bronzović M; Franić Z; Kovac J
    Arh Hig Rada Toksikol; 2006 Sep; 57(3):333-8. PubMed ID: 17121006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo.
    Hasani F; Shala F; Xhixha G; Xhixha MK; Hodolli G; Kadiri S; Bylyku E; Cfarku F
    J Environ Radioact; 2014 Dec; 138():156-61. PubMed ID: 25233215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of uranium and gross radioactivity from coal bottom ash by CaCl2 roasting followed by HNO3 leaching.
    Lei X; Qi G; Sun Y; Xu H; Wang Y
    J Hazard Mater; 2014 Jul; 276():346-52. PubMed ID: 24922094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.
    Nilsson M; Andreas L; Lagerkvist A
    Waste Manag; 2016 May; 51():97-104. PubMed ID: 26786400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radioactivity of coals and ashes from Catalağzi coal-fired power plant in Turkey.
    Aytekin H; Baldik R
    Radiat Prot Dosimetry; 2012 Apr; 149(2):211-5. PubMed ID: 21632583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of uranium levels in urine and hair of people living in a coal mining area in Yili, Xinjiang, China.
    Wufuer R; Song W; Zhang D; Pan X; Gadd GM
    J Environ Radioact; 2018 Sep; 189():168-174. PubMed ID: 29679817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.
    Papastefanou C
    J Environ Radioact; 2010 Mar; 101(3):191-200. PubMed ID: 20005612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation and mapping of uranium content of geological units in France.
    Ielsch G; Cuney M; Buscail F; Rossi F; Leon A; Cushing ME
    J Environ Radioact; 2017 Jan; 166(Pt 2):210-219. PubMed ID: 27266726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranium in Chinese coals: Concentration, spatial distribution, and modes of occurrence.
    Ren W; Cao Q; Yang L; Huang S
    J Environ Radioact; 2022 May; 246():106848. PubMed ID: 35219123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiological characteristics and investigation of the radioactive equilibrium in the ashes produced in lignite-fired power plants.
    Karangelos DJ; Petropoulos NP; Anagnostakis MJ; Hinis EP; Simopoulos SE
    J Environ Radioact; 2004; 77(3):233-46. PubMed ID: 15381319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation of natural radionuclides in soils from the vicinity of a former uranium mine Zirovski vrh, Slovenia.
    Strok M; Smodis B
    J Environ Radioact; 2010 Jan; 101(1):22-8. PubMed ID: 19762128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-instrumental geochemical study of anomalous uranium enrichment in coal.
    Havelcová M; Machovič V; Mizera J; Sýkorová I; Borecká L; Kopecký L
    J Environ Radioact; 2014 Nov; 137():52-63. PubMed ID: 24998749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Trans-uranium elements in food products (review)].
    Vasilenko IIa
    Vopr Pitan; 1994; (6):20-4. PubMed ID: 7732670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the escaping radioactivity from coal power plants (CPP).
    Papastefanou C; Charalambous S
    Health Phys; 1984 Feb; 46(2):293-302. PubMed ID: 6693260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.