These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 27155458)

  • 21. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering.
    Ingavle GC; Leach JK
    Tissue Eng Part B Rev; 2014 Aug; 20(4):277-93. PubMed ID: 24004443
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes.
    Pelipenko J; Kocbek P; Govedarica B; Rošic R; Baumgartner S; Kristl J
    Eur J Pharm Biopharm; 2013 Jun; 84(2):401-11. PubMed ID: 23085581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors.
    Kang MS; Kim JH; Singh RK; Jang JH; Kim HW
    Acta Biomater; 2015 Apr; 16():103-16. PubMed ID: 25617805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-shell designed scaffolds for drug delivery and tissue engineering.
    Perez RA; Kim HW
    Acta Biomater; 2015 Jul; 21():2-19. PubMed ID: 25792279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering.
    Davies OR; Lewis AL; Whitaker MJ; Tai H; Shakesheff KM; Howdle SM
    Adv Drug Deliv Rev; 2008 Feb; 60(3):373-87. PubMed ID: 18069079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocompatibility evaluation of emulsion electrospun nanofibers using osteoblasts for bone tissue engineering.
    Tian L; Prabhakaran MP; Ding X; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(17):1952-68. PubMed ID: 23819766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications.
    Sahoo S; Ang LT; Goh JC; Toh SL
    J Biomed Mater Res A; 2010 Jun; 93(4):1539-50. PubMed ID: 20014288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and characterization of heparin-grafted poly-L-lactic acid-chitosan core-shell nanofibers scaffold for vascular gasket.
    Wang T; Ji X; Jin L; Feng Z; Wu J; Zheng J; Wang H; Xu ZW; Guo L; He N
    ACS Appl Mater Interfaces; 2013 May; 5(9):3757-63. PubMed ID: 23586670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review on biopolymer-derived electrospun nanofibers for biomedical and antiviral applications.
    Deshmukh S; Kathiresan M; Kulandainathan MA
    Biomater Sci; 2022 Aug; 10(16):4424-4442. PubMed ID: 35820295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomacromolecular Based Fibers in Nanomedicine: A Combination of Drug Delivery and Tissue Engineering.
    Arkan E; Azandaryani AH; Moradipour P; Behbood L
    Curr Pharm Biotechnol; 2017; 18(11):909-924. PubMed ID: 29332574
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sorbitan monooleate and poly(L-lactide-co-epsilon-caprolactone) electrospun nanofibers for endothelial cell interactions.
    Li X; Su Y; He C; Wang H; Fong H; Mo X
    J Biomed Mater Res A; 2009 Dec; 91(3):878-85. PubMed ID: 19065570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospinning of polymeric nanofibers for tissue engineering applications: a review.
    Pham QP; Sharma U; Mikos AG
    Tissue Eng; 2006 May; 12(5):1197-211. PubMed ID: 16771634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanotechnology for nanomedicine and delivery of drugs.
    Venugopal J; Prabhakaran MP; Low S; Choon AT; Zhang YZ; Deepika G; Ramakrishna S
    Curr Pharm Des; 2008; 14(22):2184-200. PubMed ID: 18781971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.
    Ranjbar-Mohammadi M; Zamani M; Prabhakaran MP; Bahrami SH; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():521-31. PubMed ID: 26478340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications.
    Meinel AJ; Germershaus O; Luhmann T; Merkle HP; Meinel L
    Eur J Pharm Biopharm; 2012 May; 81(1):1-13. PubMed ID: 22342778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs.
    Potrč T; Baumgartner S; Roškar R; Planinšek O; Lavrič Z; Kristl J; Kocbek P
    Eur J Pharm Sci; 2015 Jul; 75():101-13. PubMed ID: 25910438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nanofibers.
    Vysloužilová L; Buzgo M; Pokorný P; Chvojka J; Míčková A; Rampichová M; Kula J; Pejchar K; Bílek M; Lukáš D; Amler E
    Int J Pharm; 2017 Jan; 516(1-2):293-300. PubMed ID: 27851978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in electrospun for drug delivery purpose.
    Liu M; Zhang Y; Sun S; Khan AR; Ji J; Yang M; Zhai G
    J Drug Target; 2019 Mar; 27(3):270-282. PubMed ID: 29798692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous core/sheath composite nanofibers fabricated by coaxial electrospinning as a potential mat for drug release system.
    Nguyen TT; Ghosh C; Hwang SG; Chanunpanich N; Park JS
    Int J Pharm; 2012 Dec; 439(1-2):296-306. PubMed ID: 22989981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled Release of Ciprofloxacin from Core-Shell Nanofibers with Monolithic or Blended Core.
    Zupančič Š; Sinha-Ray S; Sinha-Ray S; Kristl J; Yarin AL
    Mol Pharm; 2016 Apr; 13(4):1393-404. PubMed ID: 26950163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.