These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27155479)

  • 1. Antioxidant responses in soybean and alfalfa plants grown in DDTs contaminated soils: Useful variables for selecting plants for soil phytoremediation?
    Mitton FM; Ribas Ferreira JL; Gonzalez M; Miglioranza KSB; Monserrat JM
    Pestic Biochem Physiol; 2016 Jun; 130():17-21. PubMed ID: 27155479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DDTs-induced antioxidant responses in plants and their influence on phytoremediation process.
    Mitton FM; Gonzalez M; Monserrat JM; Miglioranza KSB
    Ecotoxicol Environ Saf; 2018 Jan; 147():151-156. PubMed ID: 28841531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants.
    Zhang Y; Liu J
    J Hazard Mater; 2011 May; 189(1-2):357-62. PubMed ID: 21411224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on phytoremediation of phenanthrene-contaminated soil with alfalfa (Medicago sativa L.)].
    Fan SX; Li PJ; Gong ZQ; He N; Zhang LH; Ren WX; Verkhozina VA
    Huan Jing Ke Xue; 2007 Sep; 28(9):2080-4. PubMed ID: 17990561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1.
    Zhang Y; Liu J; Zhou Y; Gong T; Wang J; Ge Y
    J Hazard Mater; 2013 Sep; 260():1100-7. PubMed ID: 23933506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants.
    Sinha S; Mallick S; Misra RK; Singh S; Basant A; Gupta AK
    Chemosphere; 2007 Feb; 67(1):176-87. PubMed ID: 17095039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants.
    Martí MC; Camejo D; Fernández-García N; Rellán-Alvarez R; Marques S; Sevilla F; Jiménez A
    J Hazard Mater; 2009 Nov; 171(1-3):879-85. PubMed ID: 19596515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review.
    Chen L; Beiyuan J; Hu W; Zhang Z; Duan C; Cui Q; Zhu X; He H; Huang X; Fang L
    Chemosphere; 2022 Apr; 293():133577. PubMed ID: 35016965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of weathered DDT in vascular plants: potential for phytoremediation.
    Lunney AI; Zeeb BA; Reimer KJ
    Environ Sci Technol; 2004 Nov; 38(22):6147-54. PubMed ID: 15573619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants.
    Sinha S; Gupta AK
    Chemosphere; 2005 Dec; 61(8):1204-14. PubMed ID: 16226293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of different species for use in removal of DDT from the contaminated soils.
    Mo CH; Cai QY; Li HQ; Zeng QY; Tang SR; Zhao YC
    Chemosphere; 2008 Aug; 73(1):120-5. PubMed ID: 18558421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 24-epibrassinolide treatment and intercropping willow with alfalfa increase the efficiency of the phytoremediation of cadmium-contaminated soil.
    Li Y; Dong Q; Wu D; Yin Y; Du W; Guo H
    Sci Total Environ; 2023 Jan; 854():158471. PubMed ID: 36063946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Phytoremediation of polychlorinated biphenyls contaminated soil by leguminosae-gramineae intercropping: a field trial].
    Tu C; Teng Y; Luo YM; Pan C; Sun XH; Li ZG
    Huan Jing Ke Xue; 2010 Dec; 31(12):3062-6. PubMed ID: 21360900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter.
    López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL
    Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of co-cropping on soybean growth and stress response in lead-polluted soils.
    Vergara Cid C; Pignata ML; Rodriguez JH
    Chemosphere; 2020 May; 246():125833. PubMed ID: 31927384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive analysis of degradation and accumulation of ametryn in soils and in wheat, maize, ryegrass and alfalfa plants.
    Liu Y; Ma LY; Lu YC; Jiang SS; Wu HJ; Yang H
    Ecotoxicol Environ Saf; 2017 Jun; 140():264-270. PubMed ID: 28279883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation and degradation of pentachloronitrobenzene in Medicago sativa.
    Li YY; Yang H
    J Environ Manage; 2013 Apr; 119():143-50. PubMed ID: 23474338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ractopamine up take by alfalfa (Medicago sativa) and wheat (Triticum aestivum) from soil.
    Shelver WL; DeSutter TM
    J Environ Sci (China); 2015 Aug; 34():86-92. PubMed ID: 26257350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth.
    Iannone MF; Groppa MD; Zawoznik MS; Coral DF; Fernández van Raap MB; Benavides MP
    Ecotoxicol Environ Saf; 2021 Mar; 211():111942. PubMed ID: 33476850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance.
    Goswami S; Das S
    Ecotoxicol Environ Saf; 2016 Apr; 126():211-218. PubMed ID: 26773830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.