BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 27155813)

  • 1. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of Raman parameters of real-size zigzag (n, 0) single-walled carbon nanotubes using finite-size models.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25058-25069. PubMed ID: 27711454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT calculations of structures, (13)C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walled carbon nanotubes.
    Kupka T; Chełmecka E; Pasterny K; Stachów M; Stobiński L
    Magn Reson Chem; 2012 Feb; 50(2):142-51. PubMed ID: 22354820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT calculation of structures and NMR chemical shifts of simple models of small diameter zigzag single wall carbon nanotubes (SWCNTs).
    Kupka T; Stachów M; Nieradka M; Stobiński L
    Magn Reson Chem; 2011 Sep; 49(9):549-57. PubMed ID: 21815210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on structures, 13C NMR chemical shifts, aromaticity, and chemical reactivity of finite-length open-ended armchair single-walled carbon nanotubes.
    Liu LV; Tian WQ; Chen YK; Zhang YA; Wang YA
    Nanoscale; 2010 Feb; 2(2):254-61. PubMed ID: 20644802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Walczak B; Autschbach J
    J Phys Chem A; 2006 Nov; 110(43):11995-2004. PubMed ID: 17064188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT studies on armchair (5, 5) SWCNT functionalization. Modification of selected structural and spectroscopic parameters upon two-atom molecule attachment.
    Jankowska M; Kupka T; Stobiński L; Kaminský J
    J Mol Graph Model; 2015 Feb; 55():105-14. PubMed ID: 25437097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional calculations of the 13C NMR chemical shifts in (9,0) single-walled carbon nanotubes.
    Zurek E; Autschbach J
    J Am Chem Soc; 2004 Oct; 126(40):13079-88. PubMed ID: 15469306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the 19F NMR chemical shift anisotropy tensor to differentiate between the zigzag and chiral forms of fluorinated single-walled carbon nanotubes.
    Kumari A; Dorai K
    J Phys Chem A; 2011 Jun; 115(24):6543-50. PubMed ID: 21598917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes.
    Chełmecka E; Pasterny K; Kupka T; Stobiński L
    J Mol Model; 2012 May; 18(5):2241-6. PubMed ID: 21965032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of tube curvature on the ground-state magnetism of axially confined single-walled carbon nanotubes of the zigzag-type.
    Wu J; Hagelberg F
    Chemphyschem; 2013 Jun; 14(8):1696-702. PubMed ID: 23589448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.
    Stepanian SG; Karachevtsev MV; Glamazda AY; Karachevtsev VA; Adamowicz L
    J Phys Chem A; 2009 Apr; 113(15):3621-9. PubMed ID: 19320448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon.
    Saxena S; Tyson TA
    ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory.
    Chełmecka E; Pasterny K; Kupka T; Stobiński L
    J Mol Model; 2012 Apr; 18(4):1463-72. PubMed ID: 21785933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confined water inside single-walled carbon nanotubes: global phase diagram and effect of finite length.
    Kyakuno H; Matsuda K; Yahiro H; Inami Y; Fukuoka T; Miyata Y; Yanagi K; Maniwa Y; Kataura H; Saito T; Yumura M; Iijima S
    J Chem Phys; 2011 Jun; 134(24):244501. PubMed ID: 21721637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and thermal analyses in semiconducting and metallic zigzag single-walled carbon nanotubes using molecular dynamics simulations.
    Zahra AT; Shahzad A; Manzoor A; Razzokov J; Asif QUA; Luo K; Ren G
    PLoS One; 2024; 19(2):e0296916. PubMed ID: 38335221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.