These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 27155933)
1. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks. Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933 [TBL] [Abstract][Full Text] [Related]
2. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis. Guo J; Gu L; Leffak M; Li GM Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792 [TBL] [Abstract][Full Text] [Related]
3. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900 [TBL] [Abstract][Full Text] [Related]
4. Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells. Nakatani R; Nakamori M; Fujimura H; Mochizuki H; Takahashi MP Sci Rep; 2015 Jun; 5():11020. PubMed ID: 26047474 [TBL] [Abstract][Full Text] [Related]
5. Disease-associated repeat instability and mismatch repair. Schmidt MHM; Pearson CE DNA Repair (Amst); 2016 Feb; 38():117-126. PubMed ID: 26774442 [TBL] [Abstract][Full Text] [Related]
6. Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired. Panigrahi GB; Slean MM; Simard JP; Gileadi O; Pearson CE Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12593-8. PubMed ID: 20571119 [TBL] [Abstract][Full Text] [Related]
7. MutSβ abundance and Msh3 ATP hydrolysis activity are important drivers of CTG•CAG repeat expansions. Keogh N; Chan KY; Li GM; Lahue RS Nucleic Acids Res; 2017 Sep; 45(17):10068-10078. PubMed ID: 28973443 [TBL] [Abstract][Full Text] [Related]
9. A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nakamori M; Panigrahi GB; Lanni S; Gall-Duncan T; Hayakawa H; Tanaka H; Luo J; Otabe T; Li J; Sakata A; Caron MC; Joshi N; Prasolava T; Chiang K; Masson JY; Wold MS; Wang X; Lee MYWT; Huddleston J; Munson KM; Davidson S; Layeghifard M; Edward LM; Gallon R; Santibanez-Koref M; Murata A; Takahashi MP; Eichler EE; Shlien A; Nakatani K; Mochizuki H; Pearson CE Nat Genet; 2020 Feb; 52(2):146-159. PubMed ID: 32060489 [TBL] [Abstract][Full Text] [Related]
10. Maternal germline-specific effect of DNA ligase I on CTG/CAG instability. Tomé S; Panigrahi GB; López Castel A; Foiry L; Melton DW; Gourdon G; Pearson CE Hum Mol Genet; 2011 Jun; 20(11):2131-43. PubMed ID: 21378394 [TBL] [Abstract][Full Text] [Related]
11. DNA mismatch repair complex MutSβ promotes GAA·TTC repeat expansion in human cells. Halabi A; Ditch S; Wang J; Grabczyk E J Biol Chem; 2012 Aug; 287(35):29958-67. PubMed ID: 22787155 [TBL] [Abstract][Full Text] [Related]
12. Two opposing effects of mismatch repair on CTG repeat instability in Escherichia coli. Schmidt KH; Abbott CM; Leach DR Mol Microbiol; 2000 Jan; 35(2):463-71. PubMed ID: 10652107 [TBL] [Abstract][Full Text] [Related]
13. Mutsβ generates both expansions and contractions in a mouse model of the Fragile X-associated disorders. Zhao XN; Kumari D; Gupta S; Wu D; Evanitsky M; Yang W; Usdin K Hum Mol Genet; 2015 Dec; 24(24):7087-96. PubMed ID: 26420841 [TBL] [Abstract][Full Text] [Related]
14. The mismatch repair system protects against intergenerational GAA repeat instability in a Friedreich ataxia mouse model. Ezzatizadeh V; Pinto RM; Sandi C; Sandi M; Al-Mahdawi S; Te Riele H; Pook MA Neurobiol Dis; 2012 Apr; 46(1):165-71. PubMed ID: 22289650 [TBL] [Abstract][Full Text] [Related]
15. Restarted replication forks are error-prone and cause CAG repeat expansions and contractions. Gold MA; Whalen JM; Freon K; Hong Z; Iraqui I; Lambert SAE; Freudenreich CH PLoS Genet; 2021 Oct; 17(10):e1009863. PubMed ID: 34673780 [TBL] [Abstract][Full Text] [Related]
16. Trinucleotide repeat expansions catalyzed by human cell-free extracts. Stevens JR; Lahue EE; Li GM; Lahue RS Cell Res; 2013 Apr; 23(4):565-72. PubMed ID: 23337586 [TBL] [Abstract][Full Text] [Related]
17. Slipped (CTG)*(CAG) repeats can be correctly repaired, escape repair or undergo error-prone repair. Panigrahi GB; Lau R; Montgomery SE; Leonard MR; Pearson CE Nat Struct Mol Biol; 2005 Aug; 12(8):654-62. PubMed ID: 16025129 [TBL] [Abstract][Full Text] [Related]
18. Pms2 suppresses large expansions of the (GAA·TTC)n sequence in neuronal tissues. Bourn RL; De Biase I; Pinto RM; Sandi C; Al-Mahdawi S; Pook MA; Bidichandani SI PLoS One; 2012; 7(10):e47085. PubMed ID: 23071719 [TBL] [Abstract][Full Text] [Related]
19. MutSβ and histone deacetylase complexes promote expansions of trinucleotide repeats in human cells. Gannon AM; Frizzell A; Healy E; Lahue RS Nucleic Acids Res; 2012 Nov; 40(20):10324-33. PubMed ID: 22941650 [TBL] [Abstract][Full Text] [Related]
20. In vitro (CTG)*(CAG) expansions and deletions by human cell extracts. Panigrahi GB; Cleary JD; Pearson CE J Biol Chem; 2002 Apr; 277(16):13926-34. PubMed ID: 11832482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]