These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
393 related articles for article (PubMed ID: 2715621)
1. The histoautoradiographic localization of taurocholate in rat liver after bile duct ligation. Evidence for ongoing secretion and reabsorption processes. Buscher HP; Miltenberger C; MacNelly S; Gerok W J Hepatol; 1989 Mar; 8(2):181-91. PubMed ID: 2715621 [TBL] [Abstract][Full Text] [Related]
2. Zonal changes of hepatobiliary taurocholate transport in intrahepatic cholestasis induced by 17 alpha-ethinyl estradiol: a histoautoradiographic study in rats. Buscher HP; Meder I; MacNelly S; Gerok W Hepatology; 1993 Mar; 17(3):494-9. PubMed ID: 8444423 [TBL] [Abstract][Full Text] [Related]
3. The acinar location of the sodium-independent and the sodium-dependent component of taurocholate uptake. A histoautoradiographic study of rat liver. Buscher HP; Schramm U; MacNelly S; Kurz G; Gerok W J Hepatol; 1991 Sep; 13(2):169-78. PubMed ID: 1744421 [TBL] [Abstract][Full Text] [Related]
4. Transcytotic vesicular carriers for polymeric IgA receptors accumulate in rat hepatocytes after bile duct ligation. Larkin JM; Palade GE J Cell Sci; 1991 Feb; 98 ( Pt 2)():205-16. PubMed ID: 1676032 [TBL] [Abstract][Full Text] [Related]
5. Origin, pattern, and mechanism of bile duct proliferation following biliary obstruction in the rat. Slott PA; Liu MH; Tavoloni N Gastroenterology; 1990 Aug; 99(2):466-77. PubMed ID: 1694804 [TBL] [Abstract][Full Text] [Related]
6. Alterations in bile ducts and peribiliary microcirculation in rats after common bile duct ligation. Nakano S; Haratake J; Hashimoto H Hepatology; 1995 May; 21(5):1380-6. PubMed ID: 7737645 [TBL] [Abstract][Full Text] [Related]
7. Biliary physiology in rats with bile ductular cell hyperplasia. Evidence for a secretory function of proliferated bile ductules. Alpini G; Lenzi R; Sarkozi L; Tavoloni N J Clin Invest; 1988 Feb; 81(2):569-78. PubMed ID: 2448343 [TBL] [Abstract][Full Text] [Related]
8. Regulation of renal tubular bile acid transport in the early phase of an obstructive cholestasis in the rat. Schlattjan JH; Winter C; Greven J Nephron Physiol; 2003; 95(3):p49-56. PubMed ID: 14646358 [TBL] [Abstract][Full Text] [Related]
9. Extrahepatic obstructive cholestasis reverses the bile salt secretory polarity of rat hepatocytes. Fricker G; Landmann L; Meier PJ J Clin Invest; 1989 Sep; 84(3):876-85. PubMed ID: 2760217 [TBL] [Abstract][Full Text] [Related]
10. Enhanced biliary excretion of canalicular membrane enzymes in estrogen-induced and obstructive cholestasis, and effects of different bile acids in the isolated perfused rat liver. Accatino L; Figueroa C; Pizarro M; Solís N J Hepatol; 1995 Jun; 22(6):658-70. PubMed ID: 7560859 [TBL] [Abstract][Full Text] [Related]
11. Changes in biliary excretory mechanisms in bile duct-ligated rat. Takikawa H; Wako Y; Sano N; Yamanaka M Dig Dis Sci; 1996 Feb; 41(2):256-62. PubMed ID: 8601367 [TBL] [Abstract][Full Text] [Related]
12. Histogenesis of bile duct-like cells proliferating during ethionine hepatocarcinogenesis. Evidence for a biliary epithelial nature of oval cells. Lenzi R; Liu MH; Tarsetti F; Slott PA; Alpini G; Zhai WR; Paronetto F; Lenzen R; Tavoloni N Lab Invest; 1992 Mar; 66(3):390-402. PubMed ID: 1538592 [TBL] [Abstract][Full Text] [Related]
13. Proliferation and phenotypic modulation of portal fibroblasts in the early stages of cholestatic fibrosis in the rat. Tuchweber B; Desmoulière A; Bochaton-Piallat ML; Rubbia-Brandt L; Gabbiani G Lab Invest; 1996 Jan; 74(1):265-78. PubMed ID: 8569191 [TBL] [Abstract][Full Text] [Related]
14. Effect of the dimeric bile acid analogue S 0960, a specific inhibitor of the apical sodium-dependent bile salt transporter in the ileum, on the renal handling of taurocholate. Schlattjan JH; Fehsenfeld H; Greven J Arzneimittelforschung; 2003; 53(12):837-43. PubMed ID: 14732964 [TBL] [Abstract][Full Text] [Related]
15. Pattern of bile acid regurgitation and metabolism during perfusion of the bile duct obstructed rat liver. Baumgartner U; Schölmerich J; Weitzel C; Ihling C; Sellinger M; Löhle E; Ruf G; Gerok W; Farthmann EH J Hepatol; 1995 Feb; 22(2):208-18. PubMed ID: 7790709 [TBL] [Abstract][Full Text] [Related]
16. Pipe-3D: A Pipeline Based on Immunofluorescence, 3D Confocal Imaging, Reconstructions, and Morphometry for Biliary Network Analysis in Cholestasis. Damle-Vartak A; Begher-Tibbe B; Gunther G; Geisler F; Vartak N; Hengstler JG Methods Mol Biol; 2019; 1981():25-53. PubMed ID: 31016646 [TBL] [Abstract][Full Text] [Related]
17. The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Shoda J; Kano M; Oda K; Kamiya J; Nimura Y; Suzuki H; Sugiyama Y; Miyazaki H; Todoroki T; Stengelin S; Kramer W; Matsuzaki Y; Tanaka N Am J Gastroenterol; 2001 Dec; 96(12):3368-78. PubMed ID: 11774951 [TBL] [Abstract][Full Text] [Related]
18. Expression of the bile salt export pump is maintained after chronic cholestasis in the rat. Lee JM; Trauner M; Soroka CJ; Stieger B; Meier PJ; Boyer JL Gastroenterology; 2000 Jan; 118(1):163-72. PubMed ID: 10611165 [TBL] [Abstract][Full Text] [Related]
19. A quantitative assessment of the structural changes the rat's liver following obstruction of the common bile duct. Johnstone JM; Lee EG Br J Exp Pathol; 1976 Feb; 57(1):85-94. PubMed ID: 1268043 [TBL] [Abstract][Full Text] [Related]
20. Loss of inositol 1,4,5-trisphosphate receptors from bile duct epithelia is a common event in cholestasis. Shibao K; Hirata K; Robert ME; Nathanson MH Gastroenterology; 2003 Oct; 125(4):1175-87. PubMed ID: 14517800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]