These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids. Lim SH; Lee T; Oh Y; Narayanan T; Sung BJ; Choi SM Nat Commun; 2017 Aug; 8(1):360. PubMed ID: 28842555 [TBL] [Abstract][Full Text] [Related]
5. Phase Diagram and Structure Map of Binary Nanoparticle Superlattices from a Lennard-Jones Model. Ren S; Sun Y; Zhang F; Travesset A; Wang CZ; Ho KM ACS Nano; 2020 Jun; 14(6):6795-6802. PubMed ID: 32479719 [TBL] [Abstract][Full Text] [Related]
6. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. Boles MA; Talapin DV J Am Chem Soc; 2015 Apr; 137(13):4494-502. PubMed ID: 25773648 [TBL] [Abstract][Full Text] [Related]
8. Prediction of binary nanoparticle superlattices from soft potentials. Horst N; Travesset A J Chem Phys; 2016 Jan; 144(1):014502. PubMed ID: 26747810 [TBL] [Abstract][Full Text] [Related]
9. Ligand Effects in Assembly of Cubic and Spherical Nanocrystals: Applications to Packing of Perovskite Nanocubes. Hallstrom J; Cherniukh I; Zha X; Kovalenko MV; Travesset A ACS Nano; 2023 Apr; 17(8):7219-7228. PubMed ID: 37040619 [TBL] [Abstract][Full Text] [Related]
10. Body centered tetragonal nanoparticle superlattices: why and when they form? Missoni L; Tagliazucchi M Nanoscale; 2021 Sep; 13(34):14371-14381. PubMed ID: 34473819 [TBL] [Abstract][Full Text] [Related]
11. Modeling Superlattices of Dipolar and Polarizable Semiconducting Nanoparticles. Mazzotti S; Giberti F; Galli G Nano Lett; 2019 Jun; 19(6):3912-3917. PubMed ID: 31145624 [TBL] [Abstract][Full Text] [Related]
12. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals. Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Jiao Y; Han D; Ding Y; Zhang X; Guo G; Hu J; Yang D; Dong A Nat Commun; 2015 Mar; 6():6420. PubMed ID: 25739732 [TBL] [Abstract][Full Text] [Related]
14. Binary nanoparticle superlattices of soft-particle systems. Travesset A Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9563-7. PubMed ID: 26195799 [TBL] [Abstract][Full Text] [Related]
15. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. Paik T; Diroll BT; Kagan CR; Murray CB J Am Chem Soc; 2015 May; 137(20):6662-9. PubMed ID: 25927895 [TBL] [Abstract][Full Text] [Related]
16. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation. Li Y; Lin ST; Goddard WA J Am Chem Soc; 2004 Feb; 126(6):1872-85. PubMed ID: 14871120 [TBL] [Abstract][Full Text] [Related]
17. Nanopatterning self-assembled nanoparticle superlattices by moulding microdroplets. Cheng W; Park N; Walter MT; Hartman MR; Luo D Nat Nanotechnol; 2008 Nov; 3(11):682-90. PubMed ID: 18989335 [TBL] [Abstract][Full Text] [Related]
18. Soft Skyrmions, Spontaneous Valence and Selection Rules in Nanoparticle Superlattices. Travesset A ACS Nano; 2017 Jun; 11(6):5375-5382. PubMed ID: 28514592 [TBL] [Abstract][Full Text] [Related]
20. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity. Lach M; Künzle M; Beck T Chemistry; 2017 Dec; 23(69):17482-17486. PubMed ID: 29076566 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]