These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27156535)

  • 21. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.
    Isojima T; Suh SK; Vander Sande JB; Hatton TA
    Langmuir; 2009 Jul; 25(14):8292-8. PubMed ID: 19435297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colloidal nanocrystals as LEGO® bricks for building electronic band structure models.
    Tadjine A; Delerue C
    Phys Chem Chem Phys; 2018 Mar; 20(12):8177-8184. PubMed ID: 29521391
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Waltzing route toward double-helix formation in cholesteric shells.
    Darmon A; Benzaquen M; Seč D; Čopar S; Dauchot O; Lopez-Leon T
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9469-74. PubMed ID: 27493221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural diversity in binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Kotov NA; O'Brien S; Murray CB
    Nature; 2006 Jan; 439(7072):55-9. PubMed ID: 16397494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanocrystals self-assembled in superlattices directed by the solvent-organic capping interaction.
    Dalmaschio CJ; da Silveira Firmiano EG; Pinheiro AN; Sobrinho DG; Farias de Moura A; Leite ER
    Nanoscale; 2013 Jun; 5(12):5602-10. PubMed ID: 23685460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding interactions between capped nanocrystals: three-body and chain packing effects.
    Schapotschnikow P; Vlugt TJ
    J Chem Phys; 2009 Sep; 131(12):124705. PubMed ID: 19791910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural defects in periodic and quasicrystalline binary nanocrystal superlattices.
    Bodnarchuk MI; Shevchenko EV; Talapin DV
    J Am Chem Soc; 2011 Dec; 133(51):20837-49. PubMed ID: 22007847
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticle Superlattices as Quasi-Frank-Kasper Phases.
    Travesset A
    Phys Rev Lett; 2017 Sep; 119(11):115701. PubMed ID: 28949219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe.
    Chen Z; Moore J; Radtke G; Sirringhaus H; O'Brien S
    J Am Chem Soc; 2007 Dec; 129(50):15702-9. PubMed ID: 18034489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interparticle spacing control in the superlattices of carboxylic acid-capped gold nanoparticles by hydrogen-bonding mediation.
    Yao H; Kojima H; Sato S; Kimura K
    Langmuir; 2004 Nov; 20(23):10317-23. PubMed ID: 15518531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices.
    Yang Z; Wei J; Bonville P; Pileni MP
    J Am Chem Soc; 2015 Apr; 137(13):4487-93. PubMed ID: 25785302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diamond family of nanoparticle superlattices.
    Liu W; Tagawa M; Xin HL; Wang T; Emamy H; Li H; Yager KG; Starr FW; Tkachenko AV; Gang O
    Science; 2016 Feb; 351(6273):582-6. PubMed ID: 26912698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA based strategy to nanoparticle superlattices.
    Mazid RR; Si KJ; Cheng W
    Methods; 2014 May; 67(2):215-26. PubMed ID: 24508551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold nanoparticle superlattice crystallization probed in situ.
    Abécassis B; Testard F; Spalla O
    Phys Rev Lett; 2008 Mar; 100(11):115504. PubMed ID: 18517795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Softness-driven complexity in supercrystals of gold nanoparticles.
    Pansu B; Goldmann C; Constantin D; Impéror-Clerc M; Sadoc JF
    Soft Matter; 2021 Jul; 17(26):6461-6469. PubMed ID: 34132715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices.
    Udayabhaskararao T; Altantzis T; Houben L; Coronado-Puchau M; Langer J; Popovitz-Biro R; Liz-Marzán LM; Vuković L; Král P; Bals S; Klajn R
    Science; 2017 Oct; 358(6362):514-518. PubMed ID: 29074773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling structure and porosity in catalytic nanoparticle superlattices with DNA.
    Auyeung E; Morris W; Mondloch JE; Hupp JT; Farha OK; Mirkin CA
    J Am Chem Soc; 2015 Feb; 137(4):1658-62. PubMed ID: 25611764
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Topotactic interconversion of nanoparticle superlattices.
    Macfarlane RJ; Jones MR; Lee B; Auyeung E; Mirkin CA
    Science; 2013 Sep; 341(6151):1222-5. PubMed ID: 23970559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plasmon nanoparticle superlattices as optical-frequency magnetic metamaterials.
    Alaeian H; Dionne JA
    Opt Express; 2012 Jul; 20(14):15781-96. PubMed ID: 22772268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.