These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Ye X; Zhu C; Ercius P; Raja SN; He B; Jones MR; Hauwiller MR; Liu Y; Xu T; Alivisatos AP Nat Commun; 2015 Dec; 6():10052. PubMed ID: 26628256 [TBL] [Abstract][Full Text] [Related]
43. Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging. Mayence A; Wang D; Salazar-Alvarez G; Oleynikov P; Bergström L Nanoscale; 2014 Nov; 6(22):13803-8. PubMed ID: 25292411 [TBL] [Abstract][Full Text] [Related]
44. Controlling the Formation and Structure of Nanoparticle Superlattices through Surface Ligand Behavior. Cordeiro MA; Leite ER; Stach EA Langmuir; 2016 Nov; 32(44):11606-11614. PubMed ID: 27673391 [TBL] [Abstract][Full Text] [Related]
45. Binary Protein Crystals for the Assembly of Inorganic Nanoparticle Superlattices. Künzle M; Eckert T; Beck T J Am Chem Soc; 2016 Oct; 138(39):12731-12734. PubMed ID: 27617514 [TBL] [Abstract][Full Text] [Related]
46. Magnetic assembly and annealing of colloidal lattices and superlattices. Tierno P Langmuir; 2014 Jul; 30(26):7670-5. PubMed ID: 24941202 [TBL] [Abstract][Full Text] [Related]
47. Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices. Hajiw S; Pansu B; Sadoc JF ACS Nano; 2015 Aug; 9(8):8116-21. PubMed ID: 26230645 [TBL] [Abstract][Full Text] [Related]
48. Tic-Tac-Toe Binary Lattices from the Interfacial Self-Assembly of Branched and Spherical Nanocrystals. Castelli A; de Graaf J; Prato M; Manna L; Arciniegas MP ACS Nano; 2016 Apr; 10(4):4345-53. PubMed ID: 27027973 [TBL] [Abstract][Full Text] [Related]
49. Edge states and topological phases in one-dimensional optical superlattices. Lang LJ; Cai X; Chen S Phys Rev Lett; 2012 Jun; 108(22):220401. PubMed ID: 23003578 [TBL] [Abstract][Full Text] [Related]
50. Nanocrystal superlattices that exhibit improved order on heating: an example of inverse melting? Yu Y; Jain A; Guillaussier A; Voggu VR; Truskett TM; Smilgies DM; Korgel BA Faraday Discuss; 2015; 181():181-92. PubMed ID: 25930234 [TBL] [Abstract][Full Text] [Related]
51. Light manipulation of nanoparticles in arrays of topological defects. Kasyanyuk D; Pagliusi P; Mazzulla A; Reshetnyak V; Reznikov Y; Provenzano C; Giocondo M; Vasnetsov M; Yaroshchuk O; Cipparrone G Sci Rep; 2016 Feb; 6():20742. PubMed ID: 26882826 [TBL] [Abstract][Full Text] [Related]
52. Formation of Superlattices of Gold Nanoparticles Using Ostwald Ripening in Emulsions: Transition from fcc to bcc Structure. Schmitt J; Hajiw S; Lecchi A; Degrouard J; Salonen A; Impéror-Clerc M; Pansu B J Phys Chem B; 2016 Jun; 120(25):5759-66. PubMed ID: 27267312 [TBL] [Abstract][Full Text] [Related]
53. Effects on the self-assembly of n-alkane/gold nanoparticle mixtures spread at the air-water interface. Gagnon BP; Meli MV Langmuir; 2014 Jan; 30(1):179-85. PubMed ID: 24359253 [TBL] [Abstract][Full Text] [Related]
54. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Zhang Y; Lu F; Yager KG; van der Lelie D; Gang O Nat Nanotechnol; 2013 Nov; 8(11):865-72. PubMed ID: 24141539 [TBL] [Abstract][Full Text] [Related]
55. Fractional topological states of dipolar fermions in one-dimensional optical superlattices. Xu Z; Li L; Chen S Phys Rev Lett; 2013 May; 110(21):215301. PubMed ID: 23745893 [TBL] [Abstract][Full Text] [Related]