BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

6507 related articles for article (PubMed ID: 2715660)

  • 1. Neural crest cell differentiation and carcinogenesis: capability of goldfish erythrophoroma cells for multiple differentiation and clonal polymorphism in their melanogenic variants.
    Matsumoto J; Wada K; Akiyama T
    J Invest Dermatol; 1989 May; 92(5 Suppl):255S-260S. PubMed ID: 2715660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clonal heterogeneity in physiological properties of melanized cells induced from goldfish erythrophoroma cell lines.
    Matsumoto J; Ishikawa T; Masahito P; Takayama S; Taylor JD; Tchen TT
    Differentiation; 1984; 27(1):36-45. PubMed ID: 6468803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanocyte-stimulating hormone affects melanogenic differentiation of quail neural crest cells in vitro.
    Satoh M; Ide H
    Dev Biol; 1987 Feb; 119(2):579-86. PubMed ID: 3026874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of melanized cells from a goldfish erythrophoroma: isolation of pigment translocation variants.
    Matsumoto J; Lynch TJ; Grabowski SM; Taylor JD; Tchen TT
    Science; 1982 Sep; 217(4565):1149-51. PubMed ID: 6287577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro clonal analysis of mouse neural crest development.
    Ito K; Morita T; Sieber-Blum M
    Dev Biol; 1993 Jun; 157(2):517-25. PubMed ID: 7684712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of crystallins and lens-like structures in differentiation-induced neoplastic pigment cells (goldfish erythrophoroma cells) in vitro.
    Akiyama T; Matsumoto J; Ishikawa T; Eguchi G
    Differentiation; 1986; 33(1):34-44. PubMed ID: 3102305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological effects of insulin on murine melanoma cells and fish erythrophoroma cells: a comparative study.
    Luchs A; Sumida DH; Visconti MA; Castrucci AM
    Gen Comp Endocrinol; 2008 Apr; 156(2):218-23. PubMed ID: 18329644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An association of actin isoforms with the expression of motile response in pigmentation variants induced from goldfish erythrophoroma cells.
    Akiyama T; Matsumoto J; Tchen TT
    Cell Differ; 1987 Apr; 20(4):271-7. PubMed ID: 3581173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of melanocyte stimulating hormone receptors correlates with mammalian pigmentation, and can be modulated by interferons.
    Kameyama K; Montague PM; Hearing VJ
    J Cell Physiol; 1988 Oct; 137(1):35-44. PubMed ID: 2459141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthetic pathways of pteridines and their association with phenotypic expression in vitro in normal and neoplastic pigment cells from goldfish.
    Masada M; Matsumoto J; Akino M
    Pigment Cell Res; 1990; 3(2):61-70. PubMed ID: 2201016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Cryptoxanthin suppresses UVB-induced melanogenesis in mouse: involvement of the inhibition of prostaglandin E2 and melanocyte-stimulating hormone pathways.
    Shimoda H; Shan SJ; Tanaka J; Maoka T
    J Pharm Pharmacol; 2012 Aug; 64(8):1165-76. PubMed ID: 22775220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular identification of distinct neurogenic and melanogenic neural crest sublineages.
    Luo R; Gao J; Wehrle-Haller B; Henion PD
    Development; 2003 Jan; 130(2):321-30. PubMed ID: 12466199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Appearance of tumorous phenotypes in goldfish erythrophores transfected with ras, src, and myc oncogenes and spontaneous differentiation of the transformants in vitro.
    Matsumoto J; Akiyama T; Nemoto N; Masahito P; Ishikawa T
    J Invest Dermatol; 1993 Feb; 100(2 Suppl):214S-221S. PubMed ID: 8433010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultured quail neural crest cells attain competence for terminal differentiation into melanocytes before competence to terminal differentiation into adrenergic neurons.
    Kahn CR; Sieber-Blum M
    Dev Biol; 1983 Jan; 95(1):232-8. PubMed ID: 6825927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoic acid promotes the differentiation of adrenergic cells and melanocytes in quail neural crest cultures.
    Dupin E; Le Douarin NM
    Dev Biol; 1995 Apr; 168(2):529-48. PubMed ID: 7729587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient steel factor dependence by neural crest-derived melanocyte precursors.
    Morrison-Graham K; Weston JA
    Dev Biol; 1993 Sep; 159(1):346-52. PubMed ID: 7689991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of Frizzled-3 and Wnt3a on melanocyte development: in vitro studies on neural crest cells and melanocyte precursor cell lines.
    Chang CH; Tsai RK; Tsai MH; Lin YH; Hirobe T
    J Dermatol Sci; 2014 Aug; 75(2):100-8. PubMed ID: 24815018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of induced melanogenesis in Cloudman melanoma cells by four phenotypic modifiers.
    Orlow SJ; Chakraborty AK; Boissy RE; Pawelek JM
    Exp Cell Res; 1990 Dec; 191(2):209-18. PubMed ID: 1701721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of melanized cell lines with stable phenotypes from a goldfish erythrophoroma cell line and cryopreservation of these cells by the use of autologous serum.
    Chou SC; Taylor JD; Tchen TT
    In Vitro Cell Dev Biol; 1989 Sep; 25(9):813-20. PubMed ID: 2793781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 326.