These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 27157061)
1. Corrigendum: Quantum-confinement and Structural Anisotropy result in Electrically-Tunable Dirac Cone in Few-layer Black Phosphorous. Dolui K; Quek SY Sci Rep; 2016 May; 6():25429. PubMed ID: 27157061 [No Abstract] [Full Text] [Related]
2. Quantum-confinement and Structural Anisotropy result in Electrically-Tunable Dirac Cone in Few-layer Black Phosphorous. Dolui K; Quek SY Sci Rep; 2015 Jul; 5():11699. PubMed ID: 26129645 [TBL] [Abstract][Full Text] [Related]
3. Anisotropic quantum confinement effect and electric control of surface states in Dirac semimetal nanostructures. Xiao X; Yang SA; Liu Z; Li H; Zhou G Sci Rep; 2015 Jan; 5():7898. PubMed ID: 25600392 [TBL] [Abstract][Full Text] [Related]
4. Constructing a large variety of Dirac-cone materials in the Bi(1-x)Sb(x) thin film system. Tang S; Dresselhaus MS Nanoscale; 2012 Dec; 4(24):7786-90. PubMed ID: 23138711 [TBL] [Abstract][Full Text] [Related]
5. 2D MATERIALS. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Kim J; Baik SS; Ryu SH; Sohn Y; Park S; Park BG; Denlinger J; Yi Y; Choi HJ; Kim KS Science; 2015 Aug; 349(6249):723-6. PubMed ID: 26273052 [TBL] [Abstract][Full Text] [Related]
6. Wave-function mapping of graphene quantum dots with soft confinement. Subramaniam D; Libisch F; Li Y; Pauly C; Geringer V; Reiter R; Mashoff T; Liebmann M; Burgdörfer J; Busse C; Michely T; Mazzarello R; Pratzer M; Morgenstern M Phys Rev Lett; 2012 Jan; 108(4):046801. PubMed ID: 22400872 [TBL] [Abstract][Full Text] [Related]
8. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Park J; Lee G; Wolff-Fabris F; Koh YY; Eom MJ; Kim YK; Farhan MA; Jo YJ; Kim C; Shim JH; Kim JS Phys Rev Lett; 2011 Sep; 107(12):126402. PubMed ID: 22026779 [TBL] [Abstract][Full Text] [Related]
9. Corrigendum: High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Zhang J; Wildmann JS; Ding F; Trotta R; Huo Y; Zallo E; Huber D; Rastelli A; Schmidt OG Nat Commun; 2016 May; 7():11681. PubMed ID: 27168517 [No Abstract] [Full Text] [Related]
10. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Yu H; Liu GB; Gong P; Xu X; Yao W Nat Commun; 2014 May; 5():3876. PubMed ID: 24821438 [TBL] [Abstract][Full Text] [Related]
11. Half-metallic semi-Dirac-point generated by quantum confinement in TiO2/VO2 nanostructures. Pardo V; Pickett WE Phys Rev Lett; 2009 Apr; 102(16):166803. PubMed ID: 19518738 [TBL] [Abstract][Full Text] [Related]
12. Two dimensional Dirac carbon allotropes from graphene. Xu LC; Wang RZ; Miao MS; Wei XL; Chen YP; Yan H; Lau WM; Liu LM; Ma YM Nanoscale; 2014 Jan; 6(2):1113-8. PubMed ID: 24296630 [TBL] [Abstract][Full Text] [Related]
13. Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus. Kim J; Baik SS; Jung SW; Sohn Y; Ryu SH; Choi HJ; Yang BJ; Kim KS Phys Rev Lett; 2017 Dec; 119(22):226801. PubMed ID: 29286809 [TBL] [Abstract][Full Text] [Related]
14. Thickness tunable quantum interference between surface phonon and Dirac plasmon states in thin films of the topological insulator Bi₂Se₃. Glinka YD; Babakiray S; Johnson TA; Lederman D J Phys Condens Matter; 2015 Feb; 27(5):052203. PubMed ID: 25614684 [TBL] [Abstract][Full Text] [Related]