BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27157141)

  • 1. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato.
    Cai X; Zhang C; Shu W; Ye Z; Li H; Zhang Y
    Biochem Biophys Res Commun; 2016 Jun; 474(4):736-741. PubMed ID: 27157141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway.
    Hu T; Ye J; Tao P; Li H; Zhang J; Zhang Y; Ye Z
    Plant J; 2016 Jan; 85(1):16-29. PubMed ID: 26610866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species.
    Gálvez FJ; Baghour M; Hao G; Cagnac O; Rodríguez-Rosales MP; Venema K
    Plant Physiol Biochem; 2012 Feb; 51():109-15. PubMed ID: 22153246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato.
    Li X; Ye J; Munir S; Yang T; Chen W; Liu G; Zheng W; Zhang Y
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs.
    Olías R; Eljakaoui Z; Li J; De Morales PA; Marín-Manzano MC; Pardo JM; Belver A
    Plant Cell Environ; 2009 Jul; 32(7):904-16. PubMed ID: 19302170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato.
    Zhang C; Liu J; Zhang Y; Cai X; Gong P; Zhang J; Wang T; Li H; Ye Z
    Plant Cell Rep; 2011 Mar; 30(3):389-98. PubMed ID: 20981454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M; Chen G; Zhang J; Zhang Y; Xie Q; Zhao Z; Pan Y; Hu Z
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato.
    Alshareef NO; Wang JY; Ali S; Al-Babili S; Tester M; Schmöckel SM
    Plant Physiol Biochem; 2019 Jul; 140():113-121. PubMed ID: 31100704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato.
    Zhang X; Chen L; Shi Q; Ren Z
    Plant Sci; 2020 Feb; 291():110356. PubMed ID: 31928668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of Myo-inositol oxygenase gene family in tomato reveals their involvement in ascorbic acid accumulation.
    Munir S; Mumtaz MA; Ahiakpa JK; Liu G; Chen W; Zhou G; Zheng W; Ye Z; Zhang Y
    BMC Genomics; 2020 Apr; 21(1):284. PubMed ID: 32252624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A tomato bZIP transcription factor, SlAREB, is involved in water deficit and salt stress response.
    Hsieh TH; Li CW; Su RC; Cheng CP; Sanjaya ; Tsai YC; Chan MT
    Planta; 2010 May; 231(6):1459-73. PubMed ID: 20358223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt and genotype impact on plant physiology and root proteome variations in tomato.
    Manaa A; Ben Ahmed H; Valot B; Bouchet JP; Aschi-Smiti S; Causse M; Faurobert M
    J Exp Bot; 2011 May; 62(8):2797-813. PubMed ID: 21330356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000.
    Li Z; Tian Y; Xu J; Fu X; Gao J; Wang B; Han H; Wang L; Peng R; Yao Q
    Plant Physiol Biochem; 2018 Nov; 132():683-695. PubMed ID: 30146417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation.
    Campos JF; Cara B; Pérez-Martín F; Pineda B; Egea I; Flores FB; Fernandez-Garcia N; Capel J; Moreno V; Angosto T; Lozano R; Bolarin MC
    Plant Biotechnol J; 2016 Jun; 14(6):1345-56. PubMed ID: 26578112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.
    Muneer S; Park YG; Manivannan A; Soundararajan P; Jeong BR
    Int J Mol Sci; 2014 Nov; 15(12):21803-24. PubMed ID: 25431925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    Liu T; Hu X; Zhang J; Zhang J; Du Q; Li J
    BMC Plant Biol; 2018 Feb; 18(1):34. PubMed ID: 29448924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco.
    Ai T; Liao X; Li R; Fan L; Luo F; Xu Y; Wang S
    Z Naturforsch C J Biosci; 2016; 71(7-8):243-52. PubMed ID: 27442366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyramiding ascorbate-glutathione pathway in Lycopersicum esculentum confers tolerance to drought and salinity stress.
    Raja V; Wani UM; Wani ZA; Jan N; Kottakota C; Reddy MK; Kaul T; John R
    Plant Cell Rep; 2022 Mar; 41(3):619-637. PubMed ID: 34383122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites.
    Sacco A; Raiola A; Calafiore R; Barone A; Rigano MM
    BMC Genomics; 2019 Jan; 20(1):43. PubMed ID: 30646856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of key genes involved in the phenotypic alterations of res (restored cell structure by salinity) tomato mutant and its recovery induced by salt stress through transcriptomic analysis.
    Albaladejo I; Egea I; Morales B; Flores FB; Capel C; Lozano R; Bolarin MC
    BMC Plant Biol; 2018 Oct; 18(1):213. PubMed ID: 30285698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.