BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27157242)

  • 1. Is intervertebral disc pressure linked to herniation?: An in-vitro study using a porcine model.
    Noguchi M; Gooyers CE; Karakolis T; Noguchi K; Callaghan JP
    J Biomech; 2016 Jun; 49(9):1824-1830. PubMed ID: 27157242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the combined effects of force, repetition and posture on injury pathways and micro-structural damage in isolated functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading.
    Gooyers CE; McMillan EM; Noguchi M; Quadrilatero J; Callaghan JP
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):953-9. PubMed ID: 26209903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervertebral disc herniation: studies on a porcine model exposed to highly repetitive flexion/extension motion with compressive force.
    Callaghan JP; McGill SM
    Clin Biomech (Bristol, Avon); 2001 Jan; 16(1):28-37. PubMed ID: 11114441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring interactions between force, repetition and posture on intervertebral disc height loss and bulging in isolated porcine cervical functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading.
    Gooyers CE; Callaghan JP
    J Biomech; 2015 Oct; 48(13):3701-8. PubMed ID: 26343389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical Aspects of Intervertebral Disc Injury and Implications on Biomechanics.
    Desmoulin GT; Pradhan V; Milner TE
    Spine (Phila Pa 1976); 2020 Apr; 45(8):E457-E464. PubMed ID: 31651681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of Failure Following Simulated Repetitive Lifting: A Clinically Relevant Biomechanical Cadaveric Study.
    Amin DB; Tavakoli J; Freeman BJC; Costi JJ
    Spine (Phila Pa 1976); 2020 Mar; 45(6):357-367. PubMed ID: 31593056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can prevention of a reherniation be investigated? Establishment of a herniation model and experiments with an anular closure device.
    Wilke HJ; Ressel L; Heuer F; Graf N; Rath S
    Spine (Phila Pa 1976); 2013 May; 38(10):E587-93. PubMed ID: 23429676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lumbar intervertebral disc herniation following experimental intradiscal pressure increase.
    Iencean SM
    Acta Neurochir (Wien); 2000; 142(6):669-76. PubMed ID: 10949442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging.
    Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW
    Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro disc pressure profiles below scoliosis fusion constructs.
    Buttermann GR; Beaubien BP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading.
    Shan Z; Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND
    Eur Spine J; 2017 Oct; 26(10):2629-2641. PubMed ID: 28791480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation.
    Stieber JR; Quirno M; Kang M; Valdevit A; Errico TJ
    J Spinal Disord Tech; 2011 Oct; 24(7):432-6. PubMed ID: 21336178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterolateral Disc Prolapse in Flexion Initiated by Lateral Inner Annular Failure: An Investigation of the Herniation Pathway.
    van Heeswijk VM; Thambyah A; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2017 Nov; 42(21):1604-1613. PubMed ID: 28368980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion.
    Wade KR; Robertson PA; Thambyah A; Broom ND
    Spine (Phila Pa 1976); 2014 Jun; 39(13):1018-28. PubMed ID: 24503692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation.
    Nikkhoo M; Wang JL; Parnianpour M; El-Rich M; Khalaf K
    J Biomech; 2018 Mar; 70():26-32. PubMed ID: 29397111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of simulated microgravity on lumbar spine biomechanics: an in vitro study.
    Laws CJ; Berg-Johansen B; Hargens AR; Lotz JC
    Eur Spine J; 2016 Sep; 25(9):2889-97. PubMed ID: 26403291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervertebral neural foramina deformation due to two types of repetitive combined loading.
    Drake JD; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):1-6. PubMed ID: 19008024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading.
    Frei H; Oxland TR; Rathonyi GC; Nolte LP
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.