These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27157242)

  • 41. Mechanically induced disruption of the healthy bovine intervertebral disc.
    Simunic DI; Robertson PA; Broom ND
    Spine (Phila Pa 1976); 2004 May; 29(9):972-8. PubMed ID: 15105667
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.
    Keller TS; Colloca CJ; Harrison DE; Harrison DD; Janik TJ
    Spine J; 2005; 5(3):297-309. PubMed ID: 15863086
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The biomechanical impact of facet tropism on the intervertebral disc and facet joints in the cervical spine.
    Rong X; Wang B; Ding C; Deng Y; Chen H; Meng Y; Yan W; Liu H
    Spine J; 2017 Dec; 17(12):1926-1931. PubMed ID: 28713050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The role of axial torque in disc herniation.
    Marshall LW; McGill SM
    Clin Biomech (Bristol, Avon); 2010 Jan; 25(1):6-9. PubMed ID: 19815318
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part I: Low rate loading.
    Wade KR; Schollum ML; Robertson PA; Thambyah A; Broom ND
    Eur Spine J; 2017 Oct; 26(10):2616-2628. PubMed ID: 28785999
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of an ex vivo cavity model to study repair strategies in loaded intervertebral discs.
    Li Z; Lezuo P; Pattappa G; Collin E; Alini M; Grad S; Peroglio M
    Eur Spine J; 2016 Sep; 25(9):2898-908. PubMed ID: 27037921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pressure-induced end-plate fracture in the porcine spine: Is the annulus fibrosus susceptible to damage?
    Snow CR; Harvey-Burgess M; Laird B; Brown SHM; Gregory DE
    Eur Spine J; 2018 Aug; 27(8):1767-1774. PubMed ID: 29285559
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intradiscal pressure in the degenerated porcine intervertebral disc.
    Holm S; Ekström L; Kaigle Holm A; Hansson T
    Vet Comp Orthop Traumatol; 2007; 20(1):29-33. PubMed ID: 17364093
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of intervertebral disc shape on the pathway of posterior/posterolateral partial herniation.
    Yates JP; Giangregorio L; McGill SM
    Spine (Phila Pa 1976); 2010 Apr; 35(7):734-9. PubMed ID: 20357638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine.
    Bell KM; Yan Y; Hartman RA; Lee JY
    J Biomech; 2018 Jul; 76():167-172. PubMed ID: 29929892
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo porcine intradiscal pressure as a function of external loading.
    Ekström L; Holm S; Holm AK; Hansson T
    J Spinal Disord Tech; 2004 Aug; 17(4):312-6. PubMed ID: 15280761
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The impact of posture and prolonged cyclic compressive loading on vertebral joint mechanics.
    Gooyers CE; McMillan RD; Howarth SJ; Callaghan JP
    Spine (Phila Pa 1976); 2012 Aug; 37(17):E1023-9. PubMed ID: 22472807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of a dynamic stabilisation system on load bearing of a bridged disc: an in vitro study of intradiscal pressure.
    Schmoelz W; Huber JF; Nydegger T; Claes L; Wilke HJ
    Eur Spine J; 2006 Aug; 15(8):1276-85. PubMed ID: 16429291
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A comparative study on the mechanical behavior of intervertebral disc using hyperelastic finite element model.
    Xie F; Zhou H; Zhao W; Huang L
    Technol Health Care; 2017 Jul; 25(S1):177-187. PubMed ID: 28582905
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.
    Mustafy T; El-Rich M; Mesfar W; Moglo K
    J Biomech; 2014 Sep; 47(12):2891-903. PubMed ID: 25129167
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spinal traction promotes molecular transportation in a simulated degenerative intervertebral disc model.
    Kuo YW; Hsu YC; Chuang IT; Chao PH; Wang JL
    Spine (Phila Pa 1976); 2014 Apr; 39(9):E550-6. PubMed ID: 24525989
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [EXPERIMENTAL STUDY ON EFFECT OF THREE DIFFERENT OPERATIVE WAYS OF ANNULUS FIBROSUS INCISION ON INTERVERTEBRAL DISC BIOMECHANICAL STRENGTH].
    Li P; Jia N; Shen Y; Jin X; Shen Y; Ding W; Zhang W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Feb; 30(2):202-7. PubMed ID: 27276815
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanical damage to the intervertebral disc annulus fibrosus subjected to tensile loading.
    Iatridis JC; MaClean JJ; Ryan DA
    J Biomech; 2005 Mar; 38(3):557-65. PubMed ID: 15652555
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of six degree of freedom loading sequence on the in-vitro compressive properties of human lumbar spine segments.
    Amin DB; Lawless IM; Sommerfeld D; Stanley RM; Ding B; Costi JJ
    J Biomech; 2016 Oct; 49(14):3407-3414. PubMed ID: 27663622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.