BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27157626)

  • 1. Characteristics of Bremsstrahlung emissions of (177)Lu, (188)Re, and (90)Y for SPECT/CT quantification in radionuclide therapy.
    Uribe CF; Esquinas PL; Gonzalez M; Celler A
    Phys Med; 2016 May; 32(5):691-700. PubMed ID: 27157626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast simulation of yttrium-90 bremsstrahlung photons with GATE.
    Rault E; Staelens S; Van Holen R; De Beenhouwer J; Vandenberghe S
    Med Phys; 2010 Jun; 37(6):2943-50. PubMed ID: 20632606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPECT performance evaluation on image of Yttrium 90 - Bremsstrahlung using Monte Carlo simulation.
    Pastrana Orejuela CO; de Assis Coelho F; Oliveira SM; Souza SAL; Vasconcellos de Sá L; Xavier da Silva A; Torres Berdeguez MB
    Appl Radiat Isot; 2021 Feb; 168():109456. PubMed ID: 33321371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of PET and SPECT imaging of 90Y.
    Takahashi A; Himuro K; Yamashita Y; Komiya I; Baba S; Sasaki M
    Med Phys; 2015 Apr; 42(4):1926-35. PubMed ID: 25832083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method.
    Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC
    Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation the effect of different collimators and energy window on Y-90 bremsstrahlung SPECT imaging by SIMIND Monte Carlo program.
    Taherparvar P; Shahmari N
    Nucl Med Rev Cent East Eur; 2019; 22(2):45-55. PubMed ID: 31482556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collimator and energy window optimization for ⁹⁰Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study.
    Roshan HR; Mahmoudian B; Gharepapagh E; Azarm A; Pirayesh Islamian J
    Appl Radiat Isot; 2016 Feb; 108():124-128. PubMed ID: 26720261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved quantitative
    Dewaraja YK; Chun SY; Srinivasa RN; Kaza RK; Cuneo KC; Majdalany BS; Novelli PM; Ljungberg M; Fessler JA
    Med Phys; 2017 Dec; 44(12):6364-6376. PubMed ID: 28940483
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Esquinas PL; Rodríguez-Rodríguez C; Carlos De La Vega J; Bokharaei M; Saatchi K; Shirmohammad M; Häfeli UO; Sossi V; Celler A
    Phys Med; 2017 Jan; 33():26-37. PubMed ID: 28007432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of attenuation map, scatter energy window width, and volume of interest on the calibration factor calculation in quantitative
    Karimi Ghodoosi E; D'Alessandria C; Li Y; Bartel A; Köhner M; Höllriegl V; Navab N; Eiber M; Li WB; Frey E; Ziegler S
    Phys Med; 2018 Dec; 56():74-80. PubMed ID: 30527092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Rhenium-188 SPECT/CT activity quantification for applications in radionuclide therapy using clinical reconstruction methods.
    Esquinas PL; Uribe CF; Gonzalez M; Rodríguez-Rodríguez C; Häfeli UO; Celler A
    Phys Med Biol; 2017 Jul; 62(16):6379-6396. PubMed ID: 28726679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: comparison with other Monte Carlo codes.
    Papadimitroulas P; Loudos G; Nikiforidis GC; Kagadis GC
    Med Phys; 2012 Aug; 39(8):5238-47. PubMed ID: 22894448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry: A Monte Carlo Study.
    Khazaee Moghadam M; Kamali Asl A; Geramifar P; Zaidi H
    Cancer Biother Radiopharm; 2016 Dec; 31(10):367-379. PubMed ID: 27996311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies.
    Minarik D; Sjögreen Gleisner K; Ljungberg M
    Phys Med Biol; 2008 Oct; 53(20):5689-703. PubMed ID: 18812648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the influence of
    Shiba H; Takahashi A; Baba S; Himuro K; Yamashita Y; Sasaki M
    Ann Nucl Med; 2016 Dec; 30(10):675-681. PubMed ID: 27510893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of dead-time corrections for post-radionuclide-therapy (177)Lu quantitative imaging with low-energy high-resolution collimators.
    Celler A; Piwowarska-Bilska H; Shcherbinin S; Uribe C; Mikolajczak R; Birkenfeld B
    Nucl Med Commun; 2014 Jan; 35(1):73-87. PubMed ID: 24131941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study.
    Ljungberg M; Sjögreen-Gleisner K
    Acta Oncol; 2011 Aug; 50(6):981-9. PubMed ID: 21767200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging.
    Rong X; Du Y; Frey EC
    Phys Med Biol; 2012 Jun; 57(12):3711-25. PubMed ID: 22617760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active and passive dosimetry for beta-emitting radiopharmaceutical therapy agents in a custom SPECT/CT compatible phantom.
    Bertinetti A; Garcia T; Palmer B; Rodrigues M; Bradshaw T; Vija AH; Culberson W
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38684165
    [No Abstract]   [Full Text] [Related]  

  • 20. SPECT imaging of high energy isotopes and isotopes with high energy contaminants with rotating slat collimators.
    Van Holen R; Staelens S; Vandenberghe S
    Med Phys; 2009 Sep; 36(9):4257-67. PubMed ID: 19810500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.