These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 27157761)
1. Preparation and characterization of green graphene using grape seed extract for bioapplications. Yaragalla S; Rajendran R; Jose J; AlMaadeed MA; Kalarikkal N; Thomas S Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():345-53. PubMed ID: 27157761 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification of graphene with grape seed extract: Its structural, optical and antimicrobial properties. Yaragalla S; Rajendran R; AlMaadeed MA; Kalarikkal N; Thomas S Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():305-314. PubMed ID: 31147003 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications. Kadiyala NK; Mandal BK; Ranjan S; Dasgupta N Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():191-205. PubMed ID: 30274051 [TBL] [Abstract][Full Text] [Related]
4. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification. Ye X; Feng J; Zhang J; Yang X; Liao X; Shi Q; Tan S Colloids Surf B Biointerfaces; 2017 Jan; 149():322-329. PubMed ID: 27792981 [TBL] [Abstract][Full Text] [Related]
5. Exoelectrogens Leading to Precise Reduction of Graphene Oxide by Flexibly Switching Their Environment during Respiration. Bansal P; Doshi S; Panwar AS; Bahadur D ACS Appl Mater Interfaces; 2015 Sep; 7(37):20576-84. PubMed ID: 26288348 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of the photokilling effect of TiO Shang H; Han D; Ma M; Li S; Xue W; Zhang A J Photochem Photobiol B; 2017 Dec; 177():112-123. PubMed ID: 29089229 [TBL] [Abstract][Full Text] [Related]
7. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Gurunathan S; Han J; Park JH; Kim JH Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of adenine-modified reduced graphene oxide nanosheets. Cao H; Wu X; Yin G; Warner JH Inorg Chem; 2012 Mar; 51(5):2954-60. PubMed ID: 22356685 [TBL] [Abstract][Full Text] [Related]
9. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene. Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487 [TBL] [Abstract][Full Text] [Related]
10. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent. Choi YJ; Kim E; Han J; Kim JH; Gurunathan S Molecules; 2016 Mar; 21(3):375. PubMed ID: 26999102 [TBL] [Abstract][Full Text] [Related]
11. Green chemistry approach for the synthesis of biocompatible graphene. Gurunathan S; Han JW; Kim JH Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417 [TBL] [Abstract][Full Text] [Related]
12. An environmentally friendly approach to the reduction of graphene oxide by Escherichia fergusoni. Gurunathan S; Han JW; Eppakayala V; Jeyaraj M; Kim JH J Nanosci Nanotechnol; 2013 Mar; 13(3):2091-8. PubMed ID: 23755651 [TBL] [Abstract][Full Text] [Related]
13. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability. Tu Q; Tian C; Ma T; Pang L; Wang J Colloids Surf B Biointerfaces; 2016 May; 141():196-205. PubMed ID: 26852103 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Gurunathan S; Han JW; Eppakayala V; Kim JH Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Ethylene Diamine. Pan H; Zhang Y; Wang X; Yu L; Zhang Z J Nanosci Nanotechnol; 2016 Mar; 16(3):2557-63. PubMed ID: 27455669 [TBL] [Abstract][Full Text] [Related]
16. Facile one-pot synthesis of folic acid-modified graphene to improve the performance of graphene-based sensing strategy. Zhan L; Zhang Y; Zeng QL; Liu ZD; Huang CZ J Colloid Interface Sci; 2014 Jul; 426():293-9. PubMed ID: 24863796 [TBL] [Abstract][Full Text] [Related]
17. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite. Kumar S; Koh J Int J Biol Macromol; 2014 Sep; 70():559-64. PubMed ID: 25077836 [TBL] [Abstract][Full Text] [Related]
18. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation. Kumar S; Ojha AK; Walkenfort B J Photochem Photobiol B; 2016 Jun; 159():111-9. PubMed ID: 27045279 [TBL] [Abstract][Full Text] [Related]
19. Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications. Xu LQ; Liao YB; Li NN; Li YJ; Zhang JY; Wang YB; Hu XF; Li CM J Colloid Interface Sci; 2018 Mar; 514():733-739. PubMed ID: 29316529 [TBL] [Abstract][Full Text] [Related]
20. Effect of reduced graphene oxide-hybridized ZnO thin films on the photoinactivation of Staphylococcus aureus and Salmonella enterica serovar Typhi. Teh SJ; Yeoh SL; Lee KM; Lai CW; Abdul Hamid SB; Thong KL J Photochem Photobiol B; 2016 Aug; 161():25-33. PubMed ID: 27203568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]