BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 27157761)

  • 1. Preparation and characterization of green graphene using grape seed extract for bioapplications.
    Yaragalla S; Rajendran R; Jose J; AlMaadeed MA; Kalarikkal N; Thomas S
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():345-53. PubMed ID: 27157761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical modification of graphene with grape seed extract: Its structural, optical and antimicrobial properties.
    Yaragalla S; Rajendran R; AlMaadeed MA; Kalarikkal N; Thomas S
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():305-314. PubMed ID: 31147003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioinspired gold nanoparticles decorated reduced graphene oxide nanocomposite using Syzygium cumini seed extract: Evaluation of its biological applications.
    Kadiyala NK; Mandal BK; Ranjan S; Dasgupta N
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():191-205. PubMed ID: 30274051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification.
    Ye X; Feng J; Zhang J; Yang X; Liao X; Shi Q; Tan S
    Colloids Surf B Biointerfaces; 2017 Jan; 149():322-329. PubMed ID: 27792981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoelectrogens Leading to Precise Reduction of Graphene Oxide by Flexibly Switching Their Environment during Respiration.
    Bansal P; Doshi S; Panwar AS; Bahadur D
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20576-84. PubMed ID: 26288348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the photokilling effect of TiO
    Shang H; Han D; Ma M; Li S; Xue W; Zhang A
    J Photochem Photobiol B; 2017 Dec; 177():112-123. PubMed ID: 29089229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231).
    Gurunathan S; Han J; Park JH; Kim JH
    Int J Nanomedicine; 2014; 9():1783-97. PubMed ID: 24741313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of adenine-modified reduced graphene oxide nanosheets.
    Cao H; Wu X; Yin G; Warner JH
    Inorg Chem; 2012 Mar; 51(5):2954-60. PubMed ID: 22356685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ginkgo biloba: a natural reducing agent for the synthesis of cytocompatible graphene.
    Gurunathan S; Han JW; Park JH; Eppakayala V; Kim JH
    Int J Nanomedicine; 2014; 9():363-77. PubMed ID: 24453487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent.
    Choi YJ; Kim E; Han J; Kim JH; Gurunathan S
    Molecules; 2016 Mar; 21(3):375. PubMed ID: 26999102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green chemistry approach for the synthesis of biocompatible graphene.
    Gurunathan S; Han JW; Kim JH
    Int J Nanomedicine; 2013; 8():2719-32. PubMed ID: 23940417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An environmentally friendly approach to the reduction of graphene oxide by Escherichia fergusoni.
    Gurunathan S; Han JW; Eppakayala V; Jeyaraj M; Kim JH
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2091-8. PubMed ID: 23755651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability.
    Tu Q; Tian C; Ma T; Pang L; Wang J
    Colloids Surf B Biointerfaces; 2016 May; 141():196-205. PubMed ID: 26852103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells.
    Gurunathan S; Han JW; Eppakayala V; Kim JH
    Colloids Surf B Biointerfaces; 2013 May; 105():58-66. PubMed ID: 23352948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Surface Modification and Chemical Reduction of Graphene Oxide Using Ethylene Diamine.
    Pan H; Zhang Y; Wang X; Yu L; Zhang Z
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2557-63. PubMed ID: 27455669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile one-pot synthesis of folic acid-modified graphene to improve the performance of graphene-based sensing strategy.
    Zhan L; Zhang Y; Zeng QL; Liu ZD; Huang CZ
    J Colloid Interface Sci; 2014 Jul; 426():293-9. PubMed ID: 24863796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiochemical and optical properties of chitosan based graphene oxide bionanocomposite.
    Kumar S; Koh J
    Int J Biol Macromol; 2014 Sep; 70():559-64. PubMed ID: 25077836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cadmium oxide nanoparticles grown in situ on reduced graphene oxide for enhanced photocatalytic degradation of methylene blue dye under ultraviolet irradiation.
    Kumar S; Ojha AK; Walkenfort B
    J Photochem Photobiol B; 2016 Jun; 159():111-9. PubMed ID: 27045279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vancomycin-assisted green synthesis of reduced graphene oxide for antimicrobial applications.
    Xu LQ; Liao YB; Li NN; Li YJ; Zhang JY; Wang YB; Hu XF; Li CM
    J Colloid Interface Sci; 2018 Mar; 514():733-739. PubMed ID: 29316529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of reduced graphene oxide-hybridized ZnO thin films on the photoinactivation of Staphylococcus aureus and Salmonella enterica serovar Typhi.
    Teh SJ; Yeoh SL; Lee KM; Lai CW; Abdul Hamid SB; Thong KL
    J Photochem Photobiol B; 2016 Aug; 161():25-33. PubMed ID: 27203568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.