BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 27157922)

  • 1. The drastic effect of cobalt and chromium catalysts in the borylation of arylzinc reagents.
    Komeyama K; Kiguchi S; Takaki K
    Chem Commun (Camb); 2016 May; 52(43):7009-12. PubMed ID: 27157922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cobalt-catalyzed addition of arylzinc reagents to norbornene derivatives through 1,4-cobalt migration.
    Tan BH; Yoshikai N
    Org Lett; 2014 Jun; 16(12):3392-5. PubMed ID: 24905954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Borylation and silylation of C-H bonds: a platform for diverse C-H bond functionalizations.
    Hartwig JF
    Acc Chem Res; 2012 Jun; 45(6):864-73. PubMed ID: 22075137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-valent cobalt catalysis: new opportunities for C-H functionalization.
    Gao K; Yoshikai N
    Acc Chem Res; 2014 Apr; 47(4):1208-19. PubMed ID: 24576170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobalt-Xantphos-catalyzed, LiCl-mediated preparation of arylzinc reagents from aryl iodides, bromides, and chlorides.
    Jin MY; Yoshikai N
    J Org Chem; 2011 Apr; 76(7):1972-8. PubMed ID: 21384804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt-catalyzed negishi cross-coupling reactions of (hetero)arylzinc reagents with primary and secondary alkyl bromides and iodides.
    Hammann JM; Haas D; Knochel P
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4478-81. PubMed ID: 25694155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron-catalyzed cross-coupling of alkyl sulfonates with arylzinc reagents.
    Ito S; Fujiwara Y; Nakamura E; Nakamura M
    Org Lett; 2009 Oct; 11(19):4306-9. PubMed ID: 19731937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective synthesis of 1-aryltetrahydroisoquinolines.
    Wang S; Onaran MB; Seto CT
    Org Lett; 2010 Jun; 12(12):2690-3. PubMed ID: 20481482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Fluoroalkoxy Substituted Arylboronic Esters by Iridium-Catalyzed Aromatic C-H Borylation.
    Batool F; Parveen S; Emwas AH; Sioud S; Gao X; Munawar MA; Chotana GA
    Org Lett; 2015 Sep; 17(17):4256-9. PubMed ID: 26278016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regioselective borylation of porphyrins by C-H bond activation under iridium catalysis to afford useful building blocks for porphyrin assemblies.
    Hata H; Yamaguchi S; Mori G; Nakazono S; Katoh T; Takatsu K; Hiroto S; Shinokubo H; Osuka A
    Chem Asian J; 2007 Jul; 2(7):849-59. PubMed ID: 17539042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Borylation using an Air-Stable Zinc Boryl Reagent: Systematic Access to Elusive Acylboranes.
    Campos J; Aldridge S
    Angew Chem Int Ed Engl; 2015 Nov; 54(47):14159-63. PubMed ID: 26411884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Versatile synthesis of benzothiophenes and benzoselenophenes by rapid assembly of arylzinc reagents, alkynes, and elemental chalcogens.
    Wu B; Yoshikai N
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10496-9. PubMed ID: 23960030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cobalt-catalyzed C-H borylation.
    Obligacion JV; Semproni SP; Chirik PJ
    J Am Chem Soc; 2014 Mar; 136(11):4133-6. PubMed ID: 24588541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regioselective synthesis of isochromenones by iron(III)/PhSeSePh-mediated cyclization of 2-alkynylaryl esters.
    Sperança A; Godoi B; Pinton S; Back DF; Menezes PH; Zeni G
    J Org Chem; 2011 Aug; 76(16):6789-97. PubMed ID: 21721587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-electron-transfer-induced coupling of arylzinc reagents with aryl and alkenyl halides.
    Shirakawa E; Tamakuni F; Kusano E; Uchiyama N; Konagaya W; Watabe R; Hayashi T
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):521-5. PubMed ID: 24282160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium(I)-catalyzed borylation of nitriles through the cleavage of carbon-cyano bonds.
    Tobisu M; Kinuta H; Kita Y; Rémond E; Chatani N
    J Am Chem Soc; 2012 Jan; 134(1):115-8. PubMed ID: 22185487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cobalt Boryl Complexes: Enabling and Exploiting Migratory Insertion in Base-Metal-Mediated Borylation.
    Frank R; Howell J; Campos J; Tirfoin R; Phillips N; Zahn S; Mingos DM; Aldridge S
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9586-90. PubMed ID: 26119535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly enantioselective addition of in situ prepared arylzinc to aldehydes catalyzed by a series of atropisomeric binaphthyl-derived amino alcohols.
    Lu G; Kwong FY; Ruan JW; Li YM; Chan AS
    Chemistry; 2006 May; 12(15):4115-20. PubMed ID: 16555357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 2,3-substituted thienylboronic acids and esters.
    Christophersen C; Begtrup M; Ebdrup S; Petersen H; Vedsø P
    J Org Chem; 2003 Nov; 68(24):9513-6. PubMed ID: 14629185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diastereoselective addition of arylzinc reagents to sugar aldehydes.
    Wouters AD; Lüdtke DS
    Org Lett; 2012 Aug; 14(15):3962-5. PubMed ID: 22827575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.