These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27158647)

  • 1. Corrosion and microstructural analysis data for AISI 316L and AISI 347H stainless steels after exposure to a supercritical water environment.
    Ruiz A; Timke T; van de Sande A; Heftrich T; Novotny R; Austin T
    Data Brief; 2016 Jun; 7():1341-8. PubMed ID: 27158647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Corrosion Resistance of Austenitic Stainless Steels during Conversion of Waste to Biofuel.
    Cabrini M; Lorenzi S; Pastore T; Pellegrini S; Burattini M; Miglio R
    Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel release from stainless steels.
    Haudrechy P; Mantout B; Frappaz A; Rousseau D; Chabeau G; Faure M; Claudy A
    Contact Dermatitis; 1997 Sep; 37(3):113-7. PubMed ID: 9330816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplex stainless steels for osteosynthesis devices.
    Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A
    J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Austenitic and duplex stainless steels in simulated physiological solution characterized by electrochemical and X-ray photoelectron spectroscopy studies.
    Kocijan A; Conradi M; Schön PM
    J Biomed Mater Res B Appl Biomater; 2012 Apr; 100(3):799-807. PubMed ID: 22331841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion behavior of 2205 duplex stainless steel.
    Platt JA; Guzman A; Zuccari A; Thornburg DW; Rhodes BF; Oshida Y; Moore BK
    Am J Orthod Dentofacial Orthop; 1997 Jul; 112(1):69-79. PubMed ID: 9228844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants.
    Fathi MH; Salehi M; Saatchi A; Mortazavi V; Moosavi SB
    Dent Mater; 2003 May; 19(3):188-98. PubMed ID: 12628430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of microbiologically influenced corrosion of selected steels in sugarcane juice environment.
    Wesley SB; Maurya DP; Goyal HS; Negi S
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2353-7. PubMed ID: 23764955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro response of human peripheral blood mononuclear cells to AISI 316L austenitic stainless steel subjected to nitriding and collagen coating treatments.
    Stio M; Martinesi M; Treves C; Borgioli F
    J Mater Sci Mater Med; 2015 Feb; 26(2):100. PubMed ID: 25655502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural changes within similar coronary stents produced from two different austenitic steels.
    Weiss S; Meissner A; Fischer A
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):210-6. PubMed ID: 19627825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Ball Burnished Regular Reliefs on Fatigue Life of AISI 304 and 316L Austenitic Stainless Steels.
    Slavov S; Dimitrov D; Konsulova-Bakalova M; Vasileva D
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels.
    Le MK; Zhu XM
    Biomaterials; 2001 Apr; 22(7):641-7. PubMed ID: 11246957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrosion behavior of metastable AISI 321 austenitic stainless steel: Investigating the effect of grain size and prior plastic deformation on its degradation pattern in saline media.
    Tiamiyu AA; Eduok U; Szpunar JA; Odeshi AG
    Sci Rep; 2019 Aug; 9(1):12116. PubMed ID: 31431659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbiologically influenced corrosion of AISI 202 and 316L stainless steels under manganese-oxidizing biofilms.
    Balakrishnan A; Dhaipule NGK; Philip J
    3 Biotech; 2024 Jan; 14(1):12. PubMed ID: 38107030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol-gel treatment.
    Vallet-Regí M; Izquierdo-Barba I; Gil FJ
    J Biomed Mater Res A; 2003 Nov; 67(2):674-8. PubMed ID: 14566812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effects of skeletal muscle proteins on corrosion of stainless steels].
    Rojas C; Lago ME
    Acta Cient Venez; 2002; 53(2):156-63. PubMed ID: 12516369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of boron addition on injection molded 316L stainless steel: mechanical, corrosion properties and in vitro bioactivity.
    Bayraktaroglu E; Gulsoy HO; Gulsoy N; Er O; Kilic H
    Biomed Mater Eng; 2012; 22(6):333-49. PubMed ID: 23114463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Ti-C:H coating and plasma nitriding treatment on tribological, electrochemical, and biocompatibility properties of AISI 316L.
    Kao WH; Su YL; Horng JH; Zhang KX
    J Biomater Appl; 2016 Aug; 31(2):215-29. PubMed ID: 27422714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ultrafine-grained structure on the mechanical properties and biocompatibility of austenitic stainless steels.
    Rybalchenko OV; Anisimova NY; Kiselevsky MV; Belyakov AN; Tokar AA; Terent'ev VF; Prosvirnin DV; Rybalchenko GV; Raab GI; Dobatkin SV
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1460-1468. PubMed ID: 31617961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.