These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 27158684)

  • 1. A Perturbation Mechanism for Investigations of Phase Variables in Human Locomotion.
    Villarreal DJ; Quintero D; Gregg RD
    IEEE ROBIO; 2015 Dec; 2015():2065-2071. PubMed ID: 27158684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Perturbation Mechanism for Investigations of Phase-Dependent Behavior in Human Locomotion.
    Villarreal DJ; Quintero D; Gregg RD
    IEEE Access; 2016; 4():893-904. PubMed ID: 27570719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unified Phase Variables of Relative Degree Two for Human Locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6262-6267. PubMed ID: 28261013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A survey of phase variable candidates of human locomotion.
    Villarreal DJ; Gregg RD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4017-21. PubMed ID: 25570873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations.
    Villarreal DJ; Poonawala HA; Gregg RD
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):265-278. PubMed ID: 27187967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic auditory stimuli modulate movement recovery in response to perturbation during locomotion.
    Ravi DK; Bartholet M; Skiadopoulos A; Kent JA; Wickstrom J; Taylor WR; Singh NB; Stergiou N
    J Exp Biol; 2021 Mar; 224(Pt 5):. PubMed ID: 33536309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bipedal gait versatility in the Japanese macaque (Macaca fuscata).
    Ogihara N; Hirasaki E; Andrada E; Blickhan R
    J Hum Evol; 2018 Dec; 125():2-14. PubMed ID: 30502894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function dictates the phase dependence of vision during human locomotion.
    Logan D; Ivanenko YP; Kiemel T; Cappellini G; Sylos-Labini F; Lacquaniti F; Jeka JJ
    J Neurophysiol; 2014 Jul; 112(1):165-80. PubMed ID: 24717345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric bipedal locomotion--an adaptive response to incomplete spinal injury in the chick.
    Muir GD; Katz SL; Gosline JM; Steeves JD
    Exp Brain Res; 1998 Oct; 122(3):275-82. PubMed ID: 9808300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A non-human primate model of bipedal locomotion under restrained condition allowing gait studies and single unit brain recordings.
    Goetz L; Piallat B; Thibaudier Y; Montigon O; David O; Chabardès S
    J Neurosci Methods; 2012 Mar; 204(2):306-17. PubMed ID: 22155386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in compensatory responses to unexpected resistance of leg lift during gait initiation.
    Woollacott M; Assaiante C
    Exp Brain Res; 2002 Jun; 144(3):385-96. PubMed ID: 12021820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments with Transfemoral Amputees.
    Gregg RD; Lenzi T; Hargrove LJ; Sensinger JW
    IEEE Trans Robot; 2014 Dec; 30(6):1455-1471. PubMed ID: 25558185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery.
    King ST; Eveld ME; Martínez A; Zelik KE; Goldfarb M
    J Neuroeng Rehabil; 2019 Jun; 16(1):69. PubMed ID: 31182126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to measure responses of the knee to lateral perturbations during gait? A proof-of-principle for quantification of knee instability.
    van den Noort JC; Sloot LH; Bruijn SM; Harlaar J
    J Biomech; 2017 Aug; 61():111-122. PubMed ID: 28760559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instability-induced hierarchy in bipedal locomotion.
    Ohgane K; Ueda K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051915. PubMed ID: 18643110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early corrective reactions of the leg to perturbations at the torso during walking in humans.
    Misiaszek JE; Stephens MJ; Yang JF; Pearson KG
    Exp Brain Res; 2000 Apr; 131(4):511-23. PubMed ID: 10803419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.