These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 27158813)
1. Refrigeration and cryopreservation of platelets differentially affect platelet metabolism and function: a comparison with conventional platelet storage conditions. Johnson L; Tan S; Wood B; Davis A; Marks DC Transfusion; 2016 Jul; 56(7):1807-18. PubMed ID: 27158813 [TBL] [Abstract][Full Text] [Related]
2. Characterization of biologic response modifiers in the supernatant of conventional, refrigerated, and cryopreserved platelets. Johnson L; Tan S; Jenkins E; Wood B; Marks DC Transfusion; 2018 Apr; 58(4):927-937. PubMed ID: 29330877 [TBL] [Abstract][Full Text] [Related]
3. In vitro comparison of cryopreserved and liquid platelets: potential clinical implications. Johnson L; Reade MC; Hyland RA; Tan S; Marks DC Transfusion; 2015 Apr; 55(4):838-47. PubMed ID: 25371169 [TBL] [Abstract][Full Text] [Related]
4. The hemostatic activity of cryopreserved platelets is mediated by phosphatidylserine-expressing platelets and platelet microparticles. Johnson L; Coorey CP; Marks DC Transfusion; 2014 Aug; 54(8):1917-26. PubMed ID: 24527873 [TBL] [Abstract][Full Text] [Related]
5. In vitro comparison between gamma-irradiated cryopreserved and Day 7 liquid-stored buffy coat-derived platelet components. Crimmins D; Flanagan P; Charlewood R; Ruggiero K Transfusion; 2016 Nov; 56(11):2799-2807. PubMed ID: 27526671 [TBL] [Abstract][Full Text] [Related]
6. Extended storage of thawed platelets: Refrigeration supports postthaw quality for 10 days. Johnson L; Vekariya S; Tan S; Padula MP; Marks DC Transfusion; 2020 Dec; 60(12):2969-2981. PubMed ID: 33085783 [TBL] [Abstract][Full Text] [Related]
7. Cryopreserved platelets demonstrate reduced activation responses and impaired signaling after agonist stimulation. Waters L; Padula MP; Marks DC; Johnson L Transfusion; 2017 Dec; 57(12):2845-2857. PubMed ID: 28905392 [TBL] [Abstract][Full Text] [Related]
8. Refrigerated storage of platelets initiates changes in platelet surface marker expression and localization of intracellular proteins. Wood B; Padula MP; Marks DC; Johnson L Transfusion; 2016 Oct; 56(10):2548-2559. PubMed ID: 27460096 [TBL] [Abstract][Full Text] [Related]
9. PAS-G supports platelet reconstitution after cryopreservation in the absence of plasma. Johnson L; Reid S; Tan S; Vidovic D; Marks DC Transfusion; 2013 Oct; 53(10):2268-77. PubMed ID: 23347144 [TBL] [Abstract][Full Text] [Related]
10. Storage of platelets at 4°C in platelet additive solutions prevents aggregate formation and preserves platelet functional responses. Getz TM; Montgomery RK; Bynum JA; Aden JK; Pidcoke HF; Cap AP Transfusion; 2016 Jun; 56(6):1320-8. PubMed ID: 26853912 [TBL] [Abstract][Full Text] [Related]
11. Refrigeration of apheresis platelets in platelet additive solution (PAS-E) supports in vitro platelet quality to maximize the shelf-life. Johnson L; Vekariya S; Wood B; Tan S; Roan C; Marks DC Transfusion; 2021 Jul; 61 Suppl 1():S58-S67. PubMed ID: 34269458 [TBL] [Abstract][Full Text] [Related]
12. Effect of cold storage on shear-induced platelet aggregation and clot strength. Nair PM; Pidcoke HF; Cap AP; Ramasubramanian AK J Trauma Acute Care Surg; 2014 Sep; 77(3 Suppl 2):S88-93. PubMed ID: 25159368 [TBL] [Abstract][Full Text] [Related]
13. Impact of cold storage on platelets treated with Intercept pathogen inactivation. Six KR; Devloo R; Compernolle V; Feys HB Transfusion; 2019 Aug; 59(8):2662-2671. PubMed ID: 31187889 [TBL] [Abstract][Full Text] [Related]
14. An in vitro pilot study of apheresis platelets collected on Trima Accel system and stored in T-PAS+ solution at refrigeration temperature (1-6°C). Reddoch-Cardenas KM; Sharma U; Salgado CL; Montgomery RK; Cantu C; Cingoz N; Bryant R; Darlington DN; Pidcoke HF; Kamucheka RM; Cap AP Transfusion; 2019 May; 59(5):1789-1798. PubMed ID: 30725491 [TBL] [Abstract][Full Text] [Related]
15. Cryopreservation of UVC pathogen-inactivated platelets. Waters L; Padula MP; Marks DC; Johnson L Transfusion; 2019 Jun; 59(6):2093-2102. PubMed ID: 30790288 [TBL] [Abstract][Full Text] [Related]
16. Temperature cycling improves in vivo recovery of cold-stored human platelets in a mouse model of transfusion. Xu F; Gelderman MP; Farrell J; Vostal JG Transfusion; 2013 Jun; 53(6):1178-86. PubMed ID: 22998069 [TBL] [Abstract][Full Text] [Related]
17. Cold storage of platelets in platelet additive solution: an in vitro comparison of two Food and Drug Administration-approved collection and storage systems. Reddoch-Cardenas KM; Montgomery RK; Lafleur CB; Peltier GC; Bynum JA; Cap AP Transfusion; 2018 Jul; 58(7):1682-1688. PubMed ID: 29603238 [TBL] [Abstract][Full Text] [Related]
18. Cryopreservation alters the membrane and cytoskeletal protein profile of platelet microparticles. Raynel S; Padula MP; Marks DC; Johnson L Transfusion; 2015 Oct; 55(10):2422-32. PubMed ID: 26046916 [TBL] [Abstract][Full Text] [Related]
19. Temperature cycling during platelet cold storage improves in vivo recovery and survival in healthy volunteers. Vostal JG; Gelderman MP; Skripchenko A; Xu F; Li Y; Ryan J; Cheng C; Whitley P; Wellington M; Sawyer S; Hanley S; Wagner SJ Transfusion; 2018 Jan; 58(1):25-33. PubMed ID: 29119573 [TBL] [Abstract][Full Text] [Related]
20. The impact of refrigerated storage of UVC pathogen inactivated platelet concentrates on in vitro platelet quality parameters. Johnson L; Cameron M; Waters L; Padula MP; Marks DC Vox Sang; 2019 Jan; 114(1):47-56. PubMed ID: 30499111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]