BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 27158930)

  • 21. Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities.
    Sørensen MV; Graae BJ; Hagen D; Enquist BJ; Nystuen KO; Strimbeck R
    BMC Ecol; 2018 Aug; 18(1):29. PubMed ID: 30165832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling tundra vegetation response to recent arctic warming.
    Miller PA; Smith B
    Ambio; 2012; 41 Suppl 3(Suppl 3):281-91. PubMed ID: 22864701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G
    Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.
    Morgado LN; Semenova TA; Welker JM; Walker MD; Smets E; Geml J
    Glob Chang Biol; 2016 Sep; 22(9):3080-96. PubMed ID: 27004610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arctic shrub colonization lagged peak postglacial warmth: Molecular evidence in lake sediment from Arctic Canada.
    Crump SE; Miller GH; Power M; Sepúlveda J; Dildar N; Coghlan M; Bunce M
    Glob Chang Biol; 2019 Dec; 25(12):4244-4256. PubMed ID: 31603617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate.
    Eugster W; Rouse WR; Pielke RA; Mcfadden JP; Baldocchi DD; Kittel TGF; Chapin FS; Liston GE; Vidale PL; Vaganov E; Chambers S
    Glob Chang Biol; 2000 Dec; 6(S1):84-115. PubMed ID: 35026939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental warming alters migratory caribou forage quality.
    Zamin TJ; Côté SD; Tremblay JP; Grogan P
    Ecol Appl; 2017 Oct; 27(7):2061-2073. PubMed ID: 28653471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of tundra snow-shrub interactions.
    Myers-Smith IH; Hik DS
    Ecol Evol; 2013 Oct; 3(11):3683-700. PubMed ID: 24198933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska.
    Pattison RR; Welker JM
    Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.
    Boelman NT; Gough L; Wingfield J; Goetz S; Asmus A; Chmura HE; Krause JS; Perez JH; Sweet SK; Guay KC
    Glob Chang Biol; 2015 Apr; 21(4):1508-20. PubMed ID: 25294359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drivers of contemporary and future changes in Arctic seasonal transition dates for a tundra site in coastal Greenland.
    Liu Y; Wang P; Elberling B; Westergaard-Nielsen A
    Glob Chang Biol; 2024 Jan; 30(1):e17118. PubMed ID: 38273573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.
    Euskirchen ES; Carman TB; McGuire AD
    Glob Chang Biol; 2014 Mar; 20(3):963-78. PubMed ID: 24105949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.
    Parker TC; Subke JA; Wookey PA
    Glob Chang Biol; 2015 May; 21(5):2070-81. PubMed ID: 25367088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arctic shrub growth trajectories differ across soil moisture levels.
    Ackerman D; Griffin D; Hobbie SE; Finlay JC
    Glob Chang Biol; 2017 Oct; 23(10):4294-4302. PubMed ID: 28267242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.
    Tape KD; Gustine DD; Ruess RW; Adams LG; Clark JA
    PLoS One; 2016; 11(4):e0152636. PubMed ID: 27074023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polygonal tundra geomorphological change in response to warming alters future CO2 and CH4 flux on the Barrow Peninsula.
    Lara MJ; McGuire AD; Euskirchen ES; Tweedie CE; Hinkel KM; Skurikhin AN; Romanovsky VE; Grosse G; Bolton WR; Genet H
    Glob Chang Biol; 2015 Apr; 21(4):1634-51. PubMed ID: 25258295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.