These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27159121)

  • 1. Solar-Driven Water Oxidation and Decoupled Hydrogen Production Mediated by an Electron-Coupled-Proton Buffer.
    Bloor LG; Solarska R; Bienkowski K; Kulesza PJ; Augustynski J; Symes MD; Cronin L
    J Am Chem Soc; 2016 Jun; 138(21):6707-10. PubMed ID: 27159121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water Splitting via Decoupled Photocatalytic Water Oxidation and Electrochemical Proton Reduction Mediated by Electron-Coupled-Proton Buffer.
    Li F; Yu F; Du J; Wang Y; Zhu Y; Li X; Sun L
    Chem Asian J; 2017 Oct; 12(20):2666-2669. PubMed ID: 28885769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectrochemical Hydrogen Peroxide Production from Water on a WO
    Fuku K; Miyase Y; Miseki Y; Funaki T; Gunji T; Sayama K
    Chem Asian J; 2017 May; 12(10):1111-1119. PubMed ID: 28332317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advancing the Chemistry of CuWO4 for Photoelectrochemical Water Oxidation.
    Lhermitte CR; Bartlett BM
    Acc Chem Res; 2016 Jun; 49(6):1121-9. PubMed ID: 27227377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dye-Sensitized Hydrobromic Acid Splitting for Hydrogen Solar Fuel Production.
    Brady MD; Sampaio RN; Wang D; Meyer TJ; Meyer GJ
    J Am Chem Soc; 2017 Nov; 139(44):15612-15615. PubMed ID: 29058884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and Photoelectrochemical Water Oxidation for Hydrogen Peroxide Production.
    Xue Y; Wang Y; Pan Z; Sayama K
    Angew Chem Int Ed Engl; 2021 May; 60(19):10469-10480. PubMed ID: 32926513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined biomass valorization and hydrogen production in a photoelectrochemical cell.
    Cha HG; Choi KS
    Nat Chem; 2015 Apr; 7(4):328-33. PubMed ID: 25803471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting.
    Kang D; Kim TW; Kubota SR; Cardiel AC; Cha HG; Choi KS
    Chem Rev; 2015 Dec; 115(23):12839-87. PubMed ID: 26538328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoelectrochemical Gas-Electrolyte-Solid Phase Boundary for Hydrogen Production From Water Vapor.
    Amano F; Shintani A; Mukohara H; Hwang YM; Tsurui K
    Front Chem; 2018; 6():598. PubMed ID: 30560121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical reaction for the efficient production of hydrogen and high-value-added oxidation reagents.
    Fuku K; Wang N; Miseki Y; Funaki T; Sayama K
    ChemSusChem; 2015 May; 8(9):1593-600. PubMed ID: 25872474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method.
    Ueda K; Minegishi T; Clune J; Nakabayashi M; Hisatomi T; Nishiyama H; Katayama M; Shibata N; Kubota J; Yamada T; Domen K
    J Am Chem Soc; 2015 Feb; 137(6):2227-30. PubMed ID: 25650748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar-Driven Production of Hydrogen Peroxide from Water and Dioxygen.
    Fukuzumi S; Lee YM; Nam W
    Chemistry; 2018 Apr; 24(20):5016-5031. PubMed ID: 29105181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Hydrogen Evolution from Saline Water Reduction at Neutral pH using Organic Photocathodes.
    Haro M; Solis C; Blas-Ferrando VM; Margeat O; Dhkil SB; Videlot-Ackermann C; Ackermann J; Di Fonzo F; Guerrero A; Gimenez S
    ChemSusChem; 2016 Nov; 9(21):3062-3066. PubMed ID: 27730752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly.
    Wu LZ; Chen B; Li ZJ; Tung CH
    Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities.
    Kirkaldy N; Chisholm G; Chen JJ; Cronin L
    Chem Sci; 2018 Feb; 9(6):1621-1626. PubMed ID: 29675207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts.
    Morales-Guio CG; Liardet L; Mayer MT; Tilley SD; Grätzel M; Hu X
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):664-7. PubMed ID: 25403656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.