These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 27159159)
21. Layer-by-layer films assembled from natural polymers for sustained release of neurotrophin. Zhang Z; Li Q; Han L; Zhong Y Biomed Mater; 2015 Sep; 10(5):055006. PubMed ID: 26358683 [TBL] [Abstract][Full Text] [Related]
22. High sensitivity recording of afferent nerve activity using ultra-compliant microchannel electrodes: an acute in vivo validation. Minev IR; Chew DJ; Delivopoulos E; Fawcett JW; Lacour SP J Neural Eng; 2012 Apr; 9(2):026005. PubMed ID: 22328617 [TBL] [Abstract][Full Text] [Related]
23. A convex-shaped, PDMS-parylene hybrid multichannel ECoG-electrode array. Woo-Ram Lee ; Changkyun Im ; Chin Su Koh ; Jun-Min Kim ; Hyung-Cheul Shin ; Jong-Mo Seo Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1093-1096. PubMed ID: 29060065 [TBL] [Abstract][Full Text] [Related]
24. Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans. Sillay KA; Rutecki P; Cicora K; Worrell G; Drazkowski J; Shih JJ; Sharan AD; Morrell MJ; Williams J; Wingeier B Brain Stimul; 2013 Sep; 6(5):718-26. PubMed ID: 23538208 [TBL] [Abstract][Full Text] [Related]
27. Local vs. volume conductance activity of field potentials in the human subthalamic nucleus. Marmor O; Valsky D; Joshua M; Bick AS; Arkadir D; Tamir I; Bergman H; Israel Z; Eitan R J Neurophysiol; 2017 Jun; 117(6):2140-2151. PubMed ID: 28202569 [TBL] [Abstract][Full Text] [Related]
28. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity. Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650 [TBL] [Abstract][Full Text] [Related]
29. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943 [TBL] [Abstract][Full Text] [Related]
30. Chronic In Vivo Evaluation of PEDOT/CNT for Stable Neural Recordings. Kozai TD; Catt K; Du Z; Na K; Srivannavit O; Haque RU; Seymour J; Wise KD; Yoon E; Cui XT IEEE Trans Biomed Eng; 2016 Jan; 63(1):111-9. PubMed ID: 26087481 [TBL] [Abstract][Full Text] [Related]
31. Wire Electrodes Embedded in Artificial Conduit for Long-term Monitoring of the Peripheral Nerve Signal. Jung W; Jung S; Kim O; Park H; Choi W; Son D; Chung S; Kim J Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30871203 [TBL] [Abstract][Full Text] [Related]
32. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex. Wang C; Brunton E; Haghgooie S; Cassells K; Lowery A; Rajan R J Neural Eng; 2013 Aug; 10(4):046010. PubMed ID: 23819958 [TBL] [Abstract][Full Text] [Related]
33. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces. Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406 [TBL] [Abstract][Full Text] [Related]
34. Micro- and nanotechnology for neural electrode-tissue interfaces. Liu S; Zhao Y; Hao W; Zhang XD; Ming D Biosens Bioelectron; 2020 Dec; 170():112645. PubMed ID: 33010703 [TBL] [Abstract][Full Text] [Related]
35. Intraoperative MRI for optimizing electrode placement for deep brain stimulation of the subthalamic nucleus in Parkinson disease. Cui Z; Pan L; Song H; Xu X; Xu B; Yu X; Ling Z J Neurosurg; 2016 Jan; 124(1):62-9. PubMed ID: 26274983 [TBL] [Abstract][Full Text] [Related]
36. Bottom-up SiO2 embedded carbon nanotube electrodes with superior performance for integration in implantable neural microsystems. Musa S; Rand DR; Cott DJ; Loo J; Bartic C; Eberle W; Nuttin B; Borghs G ACS Nano; 2012 Jun; 6(6):4615-28. PubMed ID: 22551016 [TBL] [Abstract][Full Text] [Related]
37. A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat. Westby GW; Wang H J Neurosci Methods; 1997 Oct; 76(2):123-33. PubMed ID: 9350963 [TBL] [Abstract][Full Text] [Related]
38. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. Prasad A; Sanchez JC J Neural Eng; 2012 Apr; 9(2):026028. PubMed ID: 22442134 [TBL] [Abstract][Full Text] [Related]
39. Biocompatibility and magnetic resonance imaging characteristics of carbon nanotube yarn neural electrodes in a rat model. Guo Y; Duan W; Ma C; Jiang C; Xie Y; Hao H; Wang R; Li L Biomed Eng Online; 2015 Dec; 14():118. PubMed ID: 26689592 [TBL] [Abstract][Full Text] [Related]