These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 27159230)
1. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Lee JS; Grav LM; Pedersen LE; Lee GM; Kildegaard HF Biotechnol Bioeng; 2016 Nov; 113(11):2518-23. PubMed ID: 27159230 [TBL] [Abstract][Full Text] [Related]
2. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells. Shin SW; Lee JS Biotechnol Bioeng; 2020 Jun; 117(6):1895-1903. PubMed ID: 32086804 [TBL] [Abstract][Full Text] [Related]
3. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Lee JS; Kallehauge TB; Pedersen LE; Kildegaard HF Sci Rep; 2015 Feb; 5():8572. PubMed ID: 25712033 [TBL] [Abstract][Full Text] [Related]
4. Controlling Ratios of Plasmid-Based Double Cut Donor and CRISPR/Cas9 Components to Enhance Targeted Integration of Transgenes in Chinese Hamster Ovary Cells. Shin SW; Kim D; Lee JS Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33673701 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9 as a Genome Editing Tool for Targeted Gene Integration in CHO Cells. Sergeeva D; Camacho-Zaragoza JM; Lee JS; Kildegaard HF Methods Mol Biol; 2019; 1961():213-232. PubMed ID: 30912048 [TBL] [Abstract][Full Text] [Related]
6. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. Shen CC; Sung LY; Lin SY; Lin MW; Hu YC ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyurea selection for enhancement of homology-directed targeted integration of transgenes in CHO cells. Kwak JM; Lee Y; Shin SW; Lee JS N Biotechnol; 2021 May; 62():26-31. PubMed ID: 33484867 [TBL] [Abstract][Full Text] [Related]
8. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35. Zhao M; Wang J; Luo M; Luo H; Zhao M; Han L; Zhang M; Yang H; Xie Y; Jiang H; Feng L; Lu H; Zhu J Appl Microbiol Biotechnol; 2018 Jul; 102(14):6105-6117. PubMed ID: 29789882 [TBL] [Abstract][Full Text] [Related]
9. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. Kawabe Y; Komatsu S; Komatsu S; Murakami M; Ito A; Sakuma T; Nakamura T; Yamamoto T; Kamihira M J Biosci Bioeng; 2018 May; 125(5):599-605. PubMed ID: 29295784 [TBL] [Abstract][Full Text] [Related]
10. Targeted integration into pseudo attP sites of CHO cells using CRISPR/Cas9. Pourtabatabaei S; Ghanbari S; Damavandi N; Bayat E; Raigani M; Zeinali S; Davami F J Biotechnol; 2021 Aug; 337():1-7. PubMed ID: 34157351 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577 [TBL] [Abstract][Full Text] [Related]
12. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574 [TBL] [Abstract][Full Text] [Related]
13. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids. Sakuma T; Takenaga M; Kawabe Y; Nakamura T; Kamihira M; Yamamoto T Int J Mol Sci; 2015 Oct; 16(10):23849-66. PubMed ID: 26473830 [TBL] [Abstract][Full Text] [Related]
14. Paired CRISPR/Cas9 Nickases Mediate Efficient Site-Specific Integration of Wang Y; Zhao J; Duan N; Liu W; Zhang Y; Zhou M; Hu Z; Feng M; Liu X; Wu L; Li Z; Liang D Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301136 [TBL] [Abstract][Full Text] [Related]
15. The application of genome editing in studying hearing loss. Zou B; Mittal R; Grati M; Lu Z; Shu Y; Tao Y; Feng Y; Xie D; Kong W; Yang S; Chen ZY; Liu X Hear Res; 2015 Sep; 327():102-8. PubMed ID: 25987504 [TBL] [Abstract][Full Text] [Related]
16. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development. Fischer S; Marquart KF; Pieper LA; Fieder J; Gamer M; Gorr I; Schulz P; Bradl H Biotechnol Bioeng; 2017 Jul; 114(7):1495-1510. PubMed ID: 28262952 [TBL] [Abstract][Full Text] [Related]
17. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Gilles AF; Schinko JB; Averof M Development; 2015 Aug; 142(16):2832-9. PubMed ID: 26160901 [TBL] [Abstract][Full Text] [Related]
18. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells. Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691 [TBL] [Abstract][Full Text] [Related]
19. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells. Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126 [TBL] [Abstract][Full Text] [Related]
20. High throughput, efficacious gene editing & genome surveillance in Chinese hamster ovary cells. Huhn SC; Ou Y; Kumar A; Liu R; Du Z PLoS One; 2019; 14(12):e0218653. PubMed ID: 31856197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]