BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27159380)

  • 1. Phytoremediation of fuel oil and lead co-contaminated soil by Chromolaena odorata in association with Micrococcus luteus.
    Jampasri K; Pokethitiyook P; Kruatrachue M; Ounjai P; Kumsopa A
    Int J Phytoremediation; 2016 Oct; 18(10):994-1001. PubMed ID: 27159380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacteria-assisted phytoremediation of fuel oil and lead co-contaminated soil in the salt-stressed condition by
    Jampasri K; Pokethitiyook P; Poolpak T; Kruatrachue M; Ounjai P; Kumsopa A
    Int J Phytoremediation; 2020; 22(3):322-333. PubMed ID: 31505941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments.
    Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S
    Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of Chromolaena odorata (L) to decontaminate used engine oil impacted soil under greenhouse conditions.
    Atagana HI
    Int J Phytoremediation; 2011 Aug; 13(7):627-41. PubMed ID: 21972491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson].
    Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R
    Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of dynamic microbial community structure and rhizosphere interactions during bioaugmented phytoremediation of petroleum contaminated soil by a newly designed rhizobox system.
    Yang KM; Poolpak T; Pokethitiyook P; Kruatrachue M
    Int J Phytoremediation; 2022; 24(14):1505-1517. PubMed ID: 35266855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the effect of oil on phytoremediation of PCB co-contamination in transformer oil using
    Anyasi RO; Atagana HI
    Int J Phytoremediation; 2021; 23(6):597-608. PubMed ID: 33556260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling of plants at petroleum contaminated site for phytoremediation.
    Anyasi RO; Atagana HI
    Int J Phytoremediation; 2018 Mar; 20(4):352-361. PubMed ID: 29584469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation potential of
    Jampasri K; Saeng-Ngam S; Larpkern P; Jantasorn A; Kruatrachue M
    Int J Phytoremediation; 2021; 23(10):1061-1066. PubMed ID: 33501846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance of
    Ayesa SA; Chukwuka KS; Odeyemi OO
    Toxicol Rep; 2018; 5():1134-1139. PubMed ID: 30479969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment.
    Peng S; Zhou Q; Cai Z; Zhang Z
    J Hazard Mater; 2009 Sep; 168(2-3):1490-6. PubMed ID: 19346069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remediation of petroleum contaminated soils through composting and rhizosphere degradation.
    Wang Z; Xu Y; Zhao J; Li F; Gao D; Xing B
    J Hazard Mater; 2011 Jun; 190(1-3):677-85. PubMed ID: 21524845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrocarbon Degradation and Lead Solubility in a Soil Polluted with Lead and Used Motor Oil Treated by Composting and Phytoremediation.
    Escobar-Alvarado LF; Vaca-Mier M; López R; Rojas-Valencia MN
    Bull Environ Contam Toxicol; 2018 Feb; 100(2):280-285. PubMed ID: 29188328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of petroleum hydrocarbon-contaminated saline-alkali soil by wild ornamental Iridaceae species.
    Cheng L; Wang Y; Cai Z; Liu J; Yu B; Zhou Q
    Int J Phytoremediation; 2017 Mar; 19(3):300-308. PubMed ID: 27592632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses.
    Soleimani M; Afyuni M; Hajabbasi MA; Nourbakhsh F; Sabzalian MR; Christensen JH
    Chemosphere; 2010 Nov; 81(9):1084-90. PubMed ID: 20961596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of plants for phytoremediation of oil-contaminated soil.
    Ikeura H; Kawasaki Y; Kaimi E; Nishiwaki J; Noborio K; Tamaki M
    Int J Phytoremediation; 2016; 18(5):460-6. PubMed ID: 26587892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community.
    Zhang Z; Zhou Q; Peng S; Cai Z
    Sci Total Environ; 2010 Oct; 408(22):5600-5. PubMed ID: 20810149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine-β-cyclodextrin enhanced phytoremediation of soil co-contaminated with phenanthrene and lead.
    Wang G; Wang Y; Hu S; Deng N; Wu F
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):10107-15. PubMed ID: 25687612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential.
    Agnello AC; Huguenot D; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2016 May; 23(9):9215-26. PubMed ID: 26838038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phyto-enhanced remediation of soil co-contaminated with lead and diesel fuel using biowaste and Dracaena reflexa: A laboratory study.
    Dadrasnia A; Pariatamby A
    Waste Manag Res; 2016 Mar; 34(3):246-53. PubMed ID: 26675494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.